1.

1.1.
1.2.
2.

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
3.

3.1
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
4.

4.1.

SWIRL: STACKED WHIR
WITH INTERACTION REDUCTIONS VIA LOGUP

OPENVM CONTRIBUTORS

ABSTRACT. We present SWIRL, a high-performance STARK designed to bridge the gap
between expressive circuit design and efficient proving. As zero-knowledge Virtual Machines
(zkVMs) grow in complexity, they increasingly rely on heterogeneous sub-components that
defy uniform constraint structures. SWIRL addresses this by using modular applications
of sumcheck to interoperate between computations over polynomials on multiple domains.
Notably, each phase of the protocol uses the domain most suitable for performance. This
involves use of piecewise hypercube stacking to go between uniform phases such as GKR
[GKR15] and WHIR [ACFY24] and heterogeneous phases such as ZeroCheck. We further
generalize the “univariate skip” technique [Gru24] to offer tunable optimizations for more
general sumcheck protocols. Instantiated with the WHIR polynomial commitment scheme,
SWIRL yields a SNARK with fast verification, compact proofs, and provable post-quantum
security.

CONTENTS

Introduction
Notation
Protocol Parameters
Preliminaries
Review of Circuit Frontend
Representations of matrices
Prismalinear extensions
Univariate lifting
Rotations
Non-interactive protocols via BCS transform
Sumcheck
Evaluating piecewise multilinears
Protocol Description
Summary
Stacked polynomial commitment
ZeroCheck
Interactions via LogUp GKR
Batch constraint sumcheck
Stacked opening reduction
WHIR
SWIRL protocol in full
Security Analysis
RBR soundness of batch sumcheck

Date: January 29, 2026.
Contact: info@openvm.dev.

© OO T W NN

I I I N R R e e el
NN O Ok Wwoo

info@openvm.dev

2 OPENVM CONTRIBUTORS

4.2. RBR soundness of the protocol 23
References 25

1. INTRODUCTION

Modern approaches to verifiable computation necessitate complex arithmetic circuits with
heterogeneous sub-components. These circuits, exemplified by zero-knowledge virtual machines
(zkVMs), feature intricate internal logic within components alongside varied intercommunica-
tions between them. Simultaneously, practical deployment demands fast verification times and
small proof sizes to support performant recursive proof aggregation and low-latency data trans-
fer.

In this work we introduce SWIRL, a new STARK proof system built to address the friction
between expressive circuit design and efficient proving. Our architecture focuses on three key
advancements:

e Supporting heterogeneous circuits without performance penalties: Many
proof systems accomodate heterogeneous circuit arithmetizations only by incurring ei-
ther significant penalties: the prover often computes on extraneous or “padded” data
to meet rigid layout requirements, or the verifier suffers from excessive polynomial
openings. We solve this by effectively stacking multivariate polynomials over different
domains together prior to invoking any polynomial commitment scheme. Crucially, this
stacking is efficiently verifiable due to special properties of boolean hypercubes.

e Fast verification for efficient recursion: Our system prioritizes low verification
latency and compact proof sizes, which also leads to highly performant recursive proof
aggregation. We utilize WHIR [ACFY24] as the polynomial commitment scheme, lever-
aging its verifier efficiency to minimize cryptographic overhead.

e Sumcheck-based optimizations: We extensively utilize sumcheck-based methods to
reduce prover overhead and the number of cryptographic commitments. We employ
a customized LogUp-GKR protocol to prove arbitrary multiset equality constraints
without additional witness commitments. Furthermore, we generalize the univariate
skip technique of [Gru24] to apply it to sumcheck-based protocols beyond ZeroCheck.

Our main result is:

Theorem 1.0.1 (informal, see Corollary 4.2.6). When instantiated with prozimity parameter
in the unique decoding regime, SWIRL is a SNARK in the quantum random oracle model with
provable soundness.

The rest of the paper is organized as follows. In §2 we review the circuit frontend arithmetiza-
tion and develop the algebraic preliminaries used throughout the protocol. In §3 we describe the
protocol in full, separated into several components. In §4 we prove round-by-round knowledge
soundness of the protocol as an IOP and provide error calculations.

1.1. Notation. We fix a base field F of prime order p. We assume that a large power of 2
divides p — 1. We also fix an extension field Feyy of F. A set £L C F is smooth if it is a
multiplicative coset of F* whose order is a power of 2. Our assumption on F ensures there are
smooth subsets of large order.

e We fix a multiplicative generator g € F*.

SWIRL 3

We fix a smooth subgroup D C F* of order 2¢ where is a protocol parameter. This D
is the univariate skip domain. For explicit computational convenience, we further fix a

~1
generator wp = gp27 of the subgroup D.

e We denote a boolean hypercube by H,, = {0,1}" for n > 0.
e Denote D, = D x H,, for n > 0. These are the primary domains we will use for

multivariate polynomial evaluation and we will refer to them as hyperprisms.

We extend the definition of D, to n > —¢ by letting I, = D x H,, as above for n > 0
and letting D_; = D?) = {xw | z € D} for 0 <4 < ¢. We fix the generator wg for
D@ For all n > —¢, observe that the cardinality of D,, is 2¢+".

e Let [N] ={1,2,...,N}.
e Let bin, : [2"] — H,, send an integer to its little-endian binary expansion.
o We define a bijection ordy, : [2¢+7"] — D, using the lexicographic ordering of the

coordinates and the generator of D. We order D,, by the D coordinate first, followed
by the coordinates of H,.

We will use plain math symbols such as f to denote functions on finite sets such as
f:D,, — F. We will often implicitly use the same symbol to denote the column vector
in F2"" whose ith entry is f(orde,(i)). If we ever need to be explicit, we will denote
ordy,, (f) : [2°7"] = F and FeF?"" the column vector of f.

The “hat” symbol over a function is typically used to remind the reader that the function
is a polynomial. Usually such a function is the polynomial extension of another function
on a smaller finite domain.

In particular for f : D, — F, we denote by f € F[Z, X1,...,X,] the unique polynomial
such that deg,(f) < |D| and degxi(f) < 2for all i € [n] and the restriction of f|p, = f
to D, equals f.

We use bold symbols to denote vectors of evaluation points (e.g., € = (1,...,2n))-
We may use z or (z,x) to denote (z,21,...,2,). We use F[Z, X] as a shorthand for
F(Z, X1,...,X,].

Given ¢ = (21,...,2n), Y = (Y1,-.-,Ym) We use x|y to denote the concatenation
(T1y ey Ty Yty e s Yrm)-

We will primarily represent matrices as functions 7' : D,, x [w] — F where w is the
width of the matrix. In these cases the height of the matrix is h = 2*" (in particular
it is a multiple of 2¢). We will use the symbols w, h with subscripts to denote the width
and height of a matrix. We will try to reserve the symbol n with subscripts to denote
the hypercube dimension. We use capital letters to denote matrices. In some special
settings, we use bold capital letters (e.g., T) to emphasize that a matrix is column-wise
partitioned. This use of bold capital letters will be distinguished from the notation
F[Z, X] based on the context.

We use 0, to denote the Kronecker delta function. For comnsistency with the litera-
ture, we use eq to denote the relevant polynomial extension, which is often used as a
convolution kernel.

1.2. Protocol Parameters. We list the parameters that the protocol depend on.

The base field F and extension field Fey.

The univariate skip parameter ¢ and the generator of the domain D.

The stacked dimension ngiack > 0 which determines the stacked domain D
The hash function £ used.

The rate p of the constrained Reed-Solomon code.

Mstack *

4 OPENVM CONTRIBUTORS

e A smooth domain £ C F* of order 2¢+mstack /p All evaluation domains for Reed-
Solomon codes are subsets of L.

e The folding parameter k used in the WHIR protocol. Typically set so k ~ log,(nstack)-

e The security parameter A used in the WHIR protocol, which determines the number of
WHIR queries.

2. PRELIMINARIES

2.1. Review of Circuit Frontend. We will use the same definitions of AIRs, interactions,
and circuits as in [Ope25b].

Definition 2.1.1 (AIR). An algebraic intermediate representation (AIR) is a set of pairs
(Ci,S;), where C;: Flz1,...,Zw, Y1, - -, Y| are constraint polynomials and w is a fixed width
associated with the AIR. The S; are special selectors, to be explained below, which can be one
of All, First, Last, Transition.

A trace matriz is a matrix with entries in F where the number of rows is a power of two.
We define the height of the matrix to be the number of rows and the width to be the number
of columns. We say that a trace matrix T satisfies the AIR {(C};,S;)} if the width of T equals
w and for each ¢ the constraint polynomial C;(x1, ..., %y, Y1, ..., Yw) evaluates to zero on the
following domain:

o If S; is All, then this applies to all pairs of cyclically consecutive rows (x1,...,Zy),
(ylv cee 7yw) of T.

e If S; is First, then this applies to the first pair of cyclically consecutive rows of T.

e If S; is Last, then this applies to the pair (last row, first row) of T.

e If S; is Transition, then this applies to all pairs of non-cyclically consecutive rows — that
is, like All but except (last, first).

Note that in our definition, the height of the trace matrix is not specified by the AIR — trace
matrices of different heights can satisfy the same AIR.

In our arithmetization, we also allow each AIR to specify a partition of the columns {1, ..., w}
of the trace matrix into parts of different types:

e Preprocessed
e Cached
e Common

This partitioning specifies to the ZK backend how data is supplied for different parts of the trace
matrix. The preprocessed trace is data that shared and agreed upon ahead of time between the
prover and verifier. The cached trace is data that is only available to the prover, but may be
cached and reused across different proofs. Lastly the common trace is the remaining data only
available to the prover. We note that if an AIR requires a preprocessed trace, then the height
of the trace matrix is fixed.

For greater flexibility, we allow multiple AIRs in the arithmetization of a single circuit. In
other words, a circuit is proved by providing multiple trace matrices. We extend the AIR arith-
metization framework with an intermediate representation for constraining relations between
different AIRs. This intermediate representation, known as interactions, was first introduced
by [Val24], building on previous interfaces for lookup tables and permutation arguments.

Definition 2.1.2 (Interactions and buses). An interaction of width w and message length
len(o) on bus b is a triple (&, 1, b), where:

SWIRL 5

o 6 cF[x1,..., %0, Y1, Yu]®@) is a sequence of len(6) polynomials defining the mes-
sage.
o 1 € Flzy,...,Tw,Y1,- -, Y] is a polynomial that determines the multiplicity of the

corresponding message.
e b e F\ {0} is the bus index specifying the bus. It must be nonzero.

Given a trace matrix T of width w with entry T;; on row % and column j, we say that an
interaction (&, 7, b) defined on T sends over bus b, for each row ¢, the image
6(Tit, s Tiws Trext(iy1s - - - » Tnext(iyw) € F
with multiplicity
m(Ti1, ..., Tiw, Thext(iyts - - - » Tnext(i)w) € F.
where next () is the cyclic next row in the trace matrix, i.e., next(i) =4 + 1 if 4 is not the last

row and next of last row is first row.

Remark 2.1.3. The width of an interaction should not be confused with its message length.
The width refers to the width of the corresponding trace matrix, whereas the message length
is the length of the message defined by each row of the trace.

In our arithmetization, an AIR is augmented with a set of interactions, where the AIR width
and interaction width coincide. An AIR may have multiple interactions, where each interaction
may have a different message length and/or bus index.

Definition 2.1.4 (Circuit). A circuit C is a collection of (A, I) where A is an AIR and [is a
collection of interactions associated with A.

2.2. Representations of matrices. In the proof system protocol, matrices will most naturally
arise as maps in the form T : D,, x [w] — F for n > —¢. Such a map corresponds to a matrix
of height 24" and width w. For fixed j € [w], we consider t; := T(e,j) : D, — F as a column

vector. Using the ordering map ordy,, : [2¢47] ~ D,,, we can identify t; with an element of

F2" Separately, for each t; : D,, — F, we can take its prismalinear extension ¢; € F[Z, X].

Observe that T : D,, X [w] — F can also be canonically identified with a map 7" : D,, — F¥.
We will implicitly make this identification and use the same notation for both. Analogously,
we will use the notation 7' to denote (i1, ...,%,) € F[Z, X]".

2.3. Prismalinear extensions. We review some fundamental results on polynomial interpo-
lation in multiple variables.

Lemma 2.3.1. Fiz a finite subset S C F and hypercube dimension n.
(i) There exists a unique polynomial
eq e F[Z, Xq,..., X, 2/, X1,...,X})]
with deg(eq), deg (eq) = |S| — 1, degy, (eq),degx/(eq) = 1 such that
eq((z,), (Z/7 :B/)) = 6(2@)7(2'@’)

forall z,2/ € S, z,x’ € H,.
(ii) The polynomial eq satisfies the identities

eqS,n((ZaX)a (Z,7X/)) = eqS(Za Z/) eqn(X7X/)
eqn(Xl || XQ’Xll || X/Q) = €qy, (Xlaxll) eqnz(X27X/2)7

where we use subscripts for clarity to distinguish eq defined over different domains.

6 OPENVM CONTRIBUTORS

(iii) For any function f : SxH, — T, there exists a unique polynomialf eF[Z Xy,...,X,]
with deg,(f) < |S|,degy,(f) < 2 such that f(z,x) = f(z,2) for all (z,x) € S x H,.
Moreoverf is given by the explicit convolution formula

(z,¢)E€SxH,,

The lemma follows from standard interpolation techniques and its proof is left to the reader.
We will call f above the prismalinear extension of f. When S = {1}, this is referred to as the
multilinear extension of f : H,, — F in the literature. When n = 0, this is univariate Lagrange
interpolation over S.

2.4. Univariate lifting. Note that we allow matrices with column vectors defined on D,, — IF
for —¢ < n < 0. Assume we are in this setting where n = —i for 0 < ¢ < £. Then D,, = DY
is a subgroup of D and the prismalinear extension f of f: D, — F is a univariate polynomial
of degree < 2071, We define the lift f € F[Z] of f by f(Z) := f(Z%). The lift is a univariate
polynomlal of degree < 2%, More specifically it is the interpolation of the function D — F : z
f(2%). We similarly define T for matrix 7 : D_; X [w] = F.

We generalize the lift to all —¢ < n by defining f f for n > 0 and f as above for n < 0. In
other words, the lift is non-trivial only for negative n, in which case f is a univariate polynomial.
The lift is a lways trivial when f is a polynomial in more than one variable.

2.5. Rotations. Define the rotation map
(2.2) rot : D, > Dy, : 2z — ordAn((ordZ,lL(z) +1) mod 2¢+™)

where we use the ordering map to bootstrap a notion of adjacency.

Suppose that we have a polynomial f € F[Z, X] and its restriction to a function f : D,, — F.
We define the rotation kernel k.ot : D, X D, — [F such that it is the unique convolution kernel
that makes the following identity hold for all z’ € D,,:

f(rot(z Z f(2)krot(2, 2").

zeD,

We define the rotation kernel polynomial &, € F[Z, X, Z’, X'] such that Aet|p, xp, = Frot
and degy (Arot), degz (Aror) < | D] and degy. (Arot),degy: (Aror) < 2 for all 4 € [n]. An explicit
formula for &, is given by

(2.3) Rrot(Z,2Z') = Z eq(rot(z’), Z) - eq(z’, Z")
z'eD,

Remark 2.5.1. Observe that for a given z € I,, on the hyperprism, we have the identity
frot(2, Z") = eq(rot'(2), Z").
We also observe that <. over the hyperprism reduces to i.ot over hypercube via the formula
frot.p, (2,X),(Z', X")) = eqp(Z,wpZ’) eqy, (X, X')
+eqp(Z,1)eap(wpZ’, 1) (Froru, (X, X') — eqy (X, X))
with subscripts for emphasis.

We define the rotation convolution operator f — f x firot : F|Z, X] — F[Z, X] by
(2.4) (f *frot)(Z) = > f(2)iret(2,Z2) = > f(rot(2))eq(2/, Z).

zeD, z'eD,

SWIRL 7

Note that the sum on the right-hand side is finite and f % £t is a polynomial. Further observe
that if we start with a function f : D, — F and take its prismalinear extension f € F[Z], then
f * frot is the prismalinear extension of fio : D, = F where fio1(2) = f(rot(2)).

2.6. Non-interactive protocols via BCS transform. This paper focuses on the proof sys-
tem as a non-interactive protocol. The protocol is obtained by applying the BCS transform
[BSCS16] to an interactive oracle proof (IOP). As our focus is on the non-interactive setting,
we state all protocols in the non-interactive version, after BCS transform, and leave it to the
reader to infer the corresponding IOP.

In particular, instead of saying “the prover sends data to the verifier”, we will say that the
“Fiat—Shamir transcript observes the data”. Instead of saying “the verifier sends a challenge
to the prover”, we will say that the “Fiat—Shamir transcript samples a challenge”. We say
“transcript” to reference the Fiat—Shamir transcript when there is no ambiguity. The transcript
operations of observe and sample are performed separately and non-interactively by both the
prover and the verifier, where the observe operation has different behavior for the prover and
the verifier: The prover serializes all data observed in the Fiat—Shamir transcript into a proof.
The verifier deserializes the proof, and the Fiat—Shamir transcript observes the proof data in
the course of the verification algorithm.

2.7. Sumcheck. We review the sumcheck protocol (cf. [LFKN92, BDT24]) and discuss some
variations.

Protocol 2.7.1 (Sumcheck). Given f e F[Xy,...,X,], the sumcheck protocol reduces a claim
about the value of ZmGHn f(x) to a claim about the value of f(r) at a randomly sampled vector
r € FL.. of extension field elements.

In an interactive protocol, the random vector r is provided by the verifier. In our non-
interactive setting, it is sampled from the Fiat—Shamir transcript. The computational analysis
depends on the degree of f . We give the full statement of the protocol, with greater generality,
later in Protocol 2.7.4.

We give a variation of the sumcheck protocol which is a reformulation of Gruen’s univariate
skip [Gru24]. We state it as a standalone protocol independent from its usage in ZeroCheck as
it may be of independent interest.

Protocol 2.7.2 (Sumcheck with univariate skip). Given fe F(Z,X1,...,X,], the sumcheck
protocol may be modified with a univariate skip in the Z wvariable to reduce a claim about the

value of Y cp f(z) to a claim about the value of f(r) at a randomly sampled vector r € FEL.

Note that the domains D,, and Hy,, have the same size. The difference between Proto-
col 2.7.1 over Hy,,, and Protocol 2.7.2 over D,, is that in the latter, there is a small decrease
in security (one random Fey is sampled instead of £), the prover does less computational work,
and the verifier needs to do more work in the form of higher degree polynomial interpolations.
Thus the univariate skip parameter ¢ can be tuned based on the desired prover—verifier cost
tradeoff.

The proof system protocol often encounters situations where multiple independent sumcheck
protocols need to be performed. It is well-known to practitioners that these sumchecks can be
more efficiently batched with the use of additional randomness. We describe the front-loaded
batched sumcheck protocol (cf. [Irr25]) below. We always use the front-loaded version of the
protocol, so we will simply refer to it as the batched sumcheck protocol in the rest of this paper.

Protocol 2.7.3 (Batched sumcheck, front-loaded). Let {f; € F[Xy,..., Xn,]}iz1...m be a
collection of polynomials, where the number of variables may differ by polynomial. Let n =

8 OPENVM CONTRIBUTORS

max; n;. Forr = (r1,...,ry) € Fly, let 7, = (r1,...,7mn,;). We describe a protocol to reduce
the computations of
> fi@)

z€H,,

to the evaluations of fl(rn) for a single random vector r € FZ,,.
First, the transcript samples a random A € Feyy. For each i, define

n
fi(Xla---7Xn):fi(Xla'--7X7ti> H Xj
Jj=n;+1

as a polynomial in n variables. Observe that 3, .y fily) = ZweHm fi(x) since fi(y) = 0
unless Yn,41 =+ = Yn = 1.

Apply algebraic batching to define f =>)\i_lfi € F[X1,...,X,]. The sumcheck claims
for eachfi, and hence each ﬁ-, hold with high probability if and only if the sumcheck claim for
ZyEHn f(y) holds. The prover and verifier apply the (not batched) sumcheck protocol to f to

reduce the sumcheck claim to the evaluation of f(r) for a randomly sampled r € FZ,

ext*
Evaluation of
m n

Fory =3 XN"fitra) I 7
i=1 j=ni+1
ollows from the evaluation o Ai Ty,) for all i by requiring the verifier to evaluate the right hand
i Y g g
side from the f; evaluations.

Batched sumcheck over hyperprisms works in exactly the same way. The protocol holds
verbatim if we replace hypercubes H,,,, H,, with hyperprisms D,,,,D,,. We state this version of
the batched sumcheck protocol, with the univariate skip, in full for future reference:

Protocol 2.7.4 (Batched sumcheck, front-loaded, with univariate skip). Let
{fi €F[Z,X1,..., X))

i=1,....,m

be a collection of polynomials, where the number of variables may differ by polynomial and
n; > 0. Let n = max;n;. For r = (ro,r1,...,7) € ngﬂ, let 7, = (ro,71,...,7n,;). We
describe a protocol to reduce the computations of

> fi2)

ZEDni

n+1
ext -

to the evaluations of fl(rn) for a single random vector r € F

(1) Assume that the Fiat-Shamir transcript has observed commitments to all fi.
(2) The prover computes the claimed sums ¢; = ZmeDni fi(x). The transcript observes ¢;

fori=1,...,m.
(3) The transcript samples random A € Fexs.
(4) The verifier computes ¢ =y, X" 1¢;.
(5) Start with a special round 0 for the univariate skip:

(a) The prover computes the univariate polynomial

m
so(X) = ZAFI Z fi(X,y)

=1 yeH,,

with the second sum over the hypercube.

SWIRL 9

(b) The transcript observes sg in coefficient form.
(c) The verifier checks that ¢ =) . s0(2).
(d) The transcript samples random ro € Foyx.
(6) Proceed through rounds j = 1,...,n of sumcheck. In round j, the transcript will have
already sampled a vector r;_1 = (ro,...,1j-1) € Fl.
(a) In round j, the prover computes the univariate polynomial

Sj(X):ZAiil Z ﬁ(Tj—l,X,y)~
i=1 y€H,_;
where fi(Z, X1,...,Xy) = fi(Z. X1, X0) - Xpg1 - Xo. If § > ny, then
ZyeHn_J filri—1, X,y) = fi(rn)rn;41---7j—1 - X. This means the prover does

not need to compute any additional sums involving fi once its dimensionality has
been exceeded.

(b) The transcript observes s;(1),...,s;(d), where d = degs;.
(c) Verifier sets the claimed value of s;(0) to equal s;_1(rj—1) — s;(1).
(d) The transcript samples random r;j € Fexs.

(e) Verifier interpolates the value of s;(r;) from the values s;(0),...,s;(d).
(7) After round n, the transcript has sampled r € F.,.
(8) The transcript observes evaluation claims v; for f;(ry,).
9

(9) The verifier checks that s, (rn) =Y, X7 v 1 g1 -+ 1.
We remark that the verifier can save computation if the n; are assumed to be sorted.

2.8. Evaluating piecewise multilinears. We record an observation that we learned from
[Irr25] that plays a key role in our treatment of multivariate polynomials over different domains.

Lemma 2.8.1 (Piecewise hypercube stacking). Let ¢ € J be a finite indexing set. For each
i € 7, let n; be a positive integer and S; a finite set. Let n,w be positive integers such that
n > max;n; and 2"w > Y. 2"|S;|. There exists an injection

j:l_lHni x S; — H,, x [w]
i€d
with the following property: given i € J and s € S;, there exists j; s € [w] and b; s € H,,_,,, such
that
.]i(zv 5) = (z ” bi,37.ji,s)
where j; denotes the restriction of j to the i-th component.

Remark 2.8.2. Another important property of j is that the elements j; s and b; ; are efficiently
computable, which will be important for the verifier protocol.

3. PrRoTOCOL DESCRIPTION

We give a technical overview of the proof system as a non-interactive protocol, deferring
security analysis to §4. The protocol will be described with respect to a fixed circuit € =
{(A1, I),..., (A}, L))}, where we fix a global ordering of the AIRs for indexing purposes.

The prover is given a collection T = {(T, Ar, IT)} where each T is a trace matrix and
(A, It) is an AIR with interactions from the circuit C. It is required that |T| < |C], i.e., the
number of used AIRs is at most the global number of AIRs. Moreover, the list of (A, IT) for
T € T must have no duplicates. Each matrix T of width w will be partitioned as

W = Wpre + Weommon + Wcache,0 +...+ Wecache,Meache *

10 OPENVM CONTRIBUTORS

3.1. Summary. The protocol consists of the following high-level steps:

(i) The prover commits to the trace matrices using at least one commitment, where multiple
commitments are used if there are cached traces. The commitment is done using a
stacked polynomial commitment scheme for multivariate polynomials of heterogeneous
degrees. The commitment is ultimately a commitment to certain stacked polynomials.

(ii) The LogUp GKR protocol is used to reduce the interactions’ bus constraints to a claim
about the GKR input layer polynomials.

(iii) ZeroCheck/LogUp Input Layer. Reduce the claim about the GKR input layer and the
claim that AIR constraints vanish to a claim about column polynomial openings.
(iv) Reduce the column polynomial claims to opening claims for the stacked polynomials.

(v) Run the WHIR protocol to generate proofs of the opening claims.

3.2. Stacked polynomial commitment. In this section, we describe how a collection T of
trace matrices is committed to in multiple commitments using a reduction to a more typical
multilinear polynomial commitment scheme. Each T € T has a partitioning of its columns into
preprocessed, common main, and a possibly empty list of cached mains. The partitioning is a
property of the associated AIR, so it is agreed upon ahead of time by the prover and verifier.
We view the matrix as a map

T:D, x [w] > F

where n is the hypercube dimension and w is the overall width. Given the partition w =
Wpre + Weommon + Wecache,1 +...+ Wecache,meacher WE let Tcommon :]D)n X [wcommon} — IF denote the
restriction, which corresponds to the matrix with all rows and only a subset of the columns.
We let Thre, Teache,j denote similar sub-matrices.

We will commit to T by:

e During proving key generation, pre-committing to each nonempty T\, in a separate
stacked polynomial commitment.

e Committing to all {Tcommon fTeT together in a stacked polynomial commitment de-
scribed below.

o Committing to each nonempty Tcache; for T € T in a separate stacked polynomial
commitment.

After generating the commitments, the prover transcript must observe all commitments.

Remark 3.2.1. The protocol treats the preprocessed and cached commitments in the same way,
with the only difference being whether the prover and verifier agree upon the commitment
during the key generation stage or not.

3.2.2. Stacked matriz construction. Each commitment will follow the same protocol, so below
we describe the stacked polynomial commitment scheme that commits a collection of trace
matrices into a single commitment.

We start with a collection T = {T : D, X [wp] — F} of trace matrices (this T is not
necessarily the same as the T mentioned in previous sections). We will describe the protocol to
commit to T in a polynomial commitment Comgack x(T) which depends on the WHIR folding
parameter k.

The commitment Comggack,kx(T) is the multivariate polynomial commitment to a different
matrix Qg : Dy, .. X [WT stack] = F. We call this the stacked trace matriz, which we presently
define. The stacked trace matrix and hence the stacked commitment depends on a protocol
parameter ngiack. The protocol requires that np < ngacc for all hypercube dimensions

SWIRL 11

nr. We can first consider 7 as a map

T: | | Doy x [wr] - F
TeT

where we recall that —¢ < np may be negative. Let fip = max(nr,0). Let wg gack =
(O wr - 28477 /264 nstac] . Note that unlike the widths wr, the number wg gpack depends
on the hypercube dimensions ny (and in turn on the heights of the matrices T'). We define an
injection

(31) L |_|]D)nT X [’LUT} — I—l]D)ﬁT X [wT] — Dnsmck X [wg"stack]
TeT TET

where the first map is induced from the canonical inclusion Dy, < Dj;,. and the second map is
obtained from the product of identity in the D coordinate and the embedding of Lemma 2.8.1.
Let T, v denote the restrictions of T, ¢ to the T-th component. We define the stacked matrix

Q7 : Dy, X (W stack] =& F

by Qs(2',5") = T(z,7) if there exists T,z,j such that tr(z,5) = (2',;') or 0 otherwise'.

Informally, Qg is defined by “stacking” the columns of each T, where for np > 0 the column of
height 26477 is stacked directly and for ny < 0 the column is expanded to a column of height
2¢ using a stride of size 27"7. While we defined Qg with zero values outside of the image of ¢,
the protocol will not impose any conditions on the values of Q5 outside of the image of .

We make the following observation, which will be a key ingredient used in later polynomial
opening proofs:

(32) T(Z,j) = Z Q‘J’(zlvj/)(s(z’,j’),LT(z,j)

’
/z eDnstack
J e[w‘T,stack]

Equation (3.2) follows from the definition of Q< and the injectivity of ¢.
The commitment Comgiaekx(T) is a certain Merkle tree based matrix commitment to the
low-degree extension of (), which we review in the next section.

3.2.3. Review of Reed-Solomon codes. The polynomial commitment we use is designed for com-
patibility with the constrained Reed-Solomon code used in WHIR (cf. §3.7). It depends on a
rate parameter p < 1. The blowup factor is 1/p.

This section is general to any matrix @ so take @Q = Qg and n = nNgack. Let L C F* be
a smooth coset of order [D,|/p = 24" /p. Classically, the Reed-Solomon code with field F,
evaluation domain £ C F and degree 2™ is

RS[F, L, 0+n] = {grs : L = F | 35 € F<2""[X] s.t. Vz € L, grs(x) = §()}.

It was observed by [ZCF23] that this code is equivalently viewed as evaluations of multilinear
polynomials:

RS[F, L, ¢ +n] == {grs : L = F | Ifsre € F<2[X1, ..., Xopn] sit.

9l olt+n—1

Va € L, grs(x) szLE(xZO,x R)}

LAnother way to say this is that Q7 is the extension by zero ¢|(T) of 7.

12 OPENVM CONTRIBUTORS

To use Reed-Solomon codes in conjunction with the univariate skip technique, we make the
further observation that

RS[F,L,¢+n]:={grs : L = F | 3f e F<22m 27, X1, ..., Xy st

~ 0 0 041 O4+n—1
V$€£,gR5(x):f($2,£C2,l'2 a"'ax2)}

where F<2"2-2[Z, X, ..., X,] refers to the space of multvariate polynomials of degree less than
2% in Z and linear in each X;. Note that this observation is simply a “mix” of the univariate
and multilinear cases above, with the first £ hyperdimensions univariate and the remaining n
hyperdimensions multilinear.

3.2.4. Matriz commitment. We will now define the polynomial commitment to @ as a certain
matrix commitment based on Reed-Solomon codes. Let gi,...,q, denote the w columns of
Q, s0 g¢j = Q(e,j) : D, » F. By Lemma 2.3.1, there exists §; € F[Z, X1,...,X,] such that
gi(z,x) = q;(z,z) for all (z,2) € D,. We define the Reed-Solomon codeword of ¢; as

RS(g;) : L = F, RS(gj)(z) = qu(x,xf, e ,x2£+n71) for x € L.

We can make the above formula explicit by using the formula for ¢; given by

(jj(Z7X): Z qj(Z,:I))eq((Z,.’D),(Z,X))
(z,2)€D,

where eq is the indicator kernel polynomial®>. Combining gives us the explicit formula

5 RS(@)@) = Y a(@)eal(za) (mr)

(z,x)€D,

We apply RS to each column ¢; of @ to get the matrix RS(Q) : £ x [w] — F. We define
the polynomial commitment Comgack k(@) to be the Merkle root of the matrix RS(Q). The
Merkle tree is defined by hashing 2% strided rows of RS(Q) into a single leaf node using the
hash function $: Each leaf node is itself the Merkle root of the row-wise hashes of 2% rows of
RS(Q), where the row indices are strided by 2¢+7+1°g2(1/p)=k The Merkle tree of RS(Q) has
depth ¢+ n +log,(1/p) — k. The row stride is chosen for compatibility with the folding step in
WHIR.

The commitment Comggack x(Q) may be viewed as:

(i) the polynomial commitment to the prismalinear polynomials §;,
(ii) the polynomial commitment to associated multilinear polynomials §; mvE, or
(ili) the polynomial commitment to associated univariate polynomials §; uni-

We will use the second view later when discussing WHIR (§3.7).
Protocol 3.2.5 (Stacked polynomial commitment). Given a collection
T=AT:D,, x [wr] = F}

of trace matrices of different heights, the trace matrices are stacked into a single stacked trace
matriz Q. The stacked commitment Comgpack 1(7T) is defined to be the matriz commitment of
the matriz RS(Q7). This is a polynomial commitment to the prismalinear extensions §; of the
columns of Q.

2This is the multivariate extension of the Kronecker delta function on Dy X Dy,

SWIRL 13

3.3. ZeroCheck. We provide a formulation of the ZeroCheck protocol tailored to our setting.
We will state ZeroCheck without relating it to LogUp first, and then put them together in the
protocol in §3.5.

Start with a collection of trace matrices T = {(T, Ar, IT)} where each T is partitioned.
Recall that the AIR At associated to a trace matrix T consists of a collection of (C,S) pairs
where C € F[Un,...,Upr, Vi,..., Ve = FIU, V] is the constraint polynomial and S is a
selector. Given the domain D,,.., we can view the selector as a function S, : D, — {0,1}.

The condition that T satisfies the constraint (C,S) is equivalent to the condition that

(3.4) C(T(z), T(rot(2)))-S(z) =0, forall z € D,.,..

3.3.1. Polynomial extension of selectors. Fix n > —{. Recall from Definition 2.1.1 that the
selectors we allow for fixed n are All, First, Last, Transition as functions on D,. We provide
explicit formulas for the prismalinear extensions of these selectors.

(1) All is the constant function 1.

— £ L4n
(i) First(Z) = £ 4= - T[,(1 - X;) if n> 0 or g Z—=L if n < 0.
(i) Cast(Z) = & @227 =L 1" X, ifn >0 or o1 i 21 e
20 wpzZ-1 =11 = o0Fn .

W@ Mz
o o D

(iv) Transition(Z) = 1 — Last(Z)
Observe that (wDZ)QE =72,

3.3.2. Constraints as polynomials. We rewrite (3.4) as
C(T(2), Tyt (2))-S(z) =0, forall z € D,

where Tyor = T * froy is the prismalinear extension of Tyt (see equation (2.4)). Let i =
max(nT,0). Then using the lifts defined in §2.4, the above is equivalent to

(3.5) C(T(z), Trot(2)) - S(z) =0, for all z € Dy,

where the only difference is when nt < 0. We caution that when nt < 0, the lift ’f‘rot is not
the same as T x Rrot- We apply this lift so that the hyperprism Dj,. always contains D as a
factor, which is important for batch sumcheck below.

We now take the prismalinear extension of (3.5) above as a function on Ds.. to get

Cr(2)= Y eq(Z,z) C(T(2), Trot(2)) - Sur(2)

z€Da

The equation (3.4) is satisfied (i.e., T satisfies the constraint) if and only if the polynomial
Cr € F|Z] is identifically zero.

Given arandom & € F*ZT! we then have that (3.4) holds with high probability if Cp(€) = 0.
The latter is now the condition that

(3.6) 3" eq(€.2) O(T(2), Trot(2)) - Snr (2) = 0.

z€Ds

The summand on the left hand side is a polynomial in z because eq, ’T, Trot,gnT are polyno-
mials. Therefore we can apply sumcheck with univariate skip (Protocol 2.7.2) to reduce (3.6)
to an evaluation claim.

14 OPENVM CONTRIBUTORS

3.3.3. Algebraic batching of multiple constraints. The condition for T to satisfy an AIR A
(without interactions) is that T satisfies (C,S) for all (C,S) € A. This is equivalent to the
vanishing of the polynomial Cr for all (C,S) € A. We use the well-known technique of algebraic
batching (cf. [Hab22, §3.3]) to combine the ZeroCheck protocol for these constraints into a single
sumcheck.
Start with a random A € Fey. By fixing a total ordering on A, fix a bijection (C,S) —
GS) A= {0)\‘A"l}. Define

%T A Z)\(C S). CVT)
(3'7) (C,S)eA - - B
= > @lZ.2) Y XY O(T(2), Tror(2)) - Sue(2)
zeD, (C,S)eA

Given a random £ € IE‘Z,;QH that is independently sampled from A, then the condition that T

satisfies A holds with high probability if ‘€~T 4(€) = 0, which reduces to a sumcheck as in (3.6).

We state the ZeroCheck protocol for T by applying the ZeroCheck protocol for each (T, A)
in 7 and batching the sumchecks for each trace T.

Protocol 3.3.4 (ZeroCheck, multiple AIRs). Let ny = maxreg p where i = max(nr,0).
Let A\ € Foyy and € €]I"Zf;r be independently randomly sampled. The collection T = {(T, A, I)}

satisfies the AIR constraints for all trace matrices with high probability if for each (T, A) € T,
the sum

(3.8) Z Enpr 2 Z ALES). () Trot(z)) “Snr(2)

z€Da . (C,S)eA
vanishes, where & is the truncation of § to]F?thH The batched sumcheck protocol can be
applied to reduce the computation of the sum (3.8) to the evaluation of

(39) eq T rnT Z A(C S). C (rnT) rot (rﬁT)) ' vaTlT (r"_LT)
(C,S)eA

for each (T, A) with respect to a shared random r € F23H. The random v € FI3T is sampled
and used across the parallel sumchecks, where 4. denotes its truncation to Frz+l

ext
The evaluation of (3.9) reduces to the evaluation of
T(rpy) and Teot(Tny)

by requirmg the verifier to directly evaluate (3.9) in terms of T, T(rny), Trot (Fny), where we
let 1. =73 " for np <0 so that T(riy) = T(rp.).

3.4. Interactions via LogUp GKR. We return to the proving context of a collection of trace
matrices T = {(T, Ar, I1)} where each T is partitioned.

3.4.1. Review of F-multiset balancing. Recall the Definition 2.1.2 of interactions and buses. We
review what it means for circuit buses to balance with respect to T, with some rephrasing in
terms of our hyperprism domains.
The set of possible messages is denoted F™ = | |, F? (disjoint union). An F-multiset is a
function -
M Ft =T

that assigns an F-valued “multiplicity” to each message FT.

SWIRL 15

For (T : Dy X [wr] = F, Ar, IT) € T, we have the interactions It = {(&,,b)}. Recall the
rotation map rot : D, — Dy, defined in (2.2). Given z € D, we can evaluate the message
o to get message value

or(z) :=6(T(z,e), T(rot(z),e)) € Flen(s)

where len(&) is the message length and we abuse notation to view T(z,e) : [wr] — F as an
element of F*T. We similarly define the multiplicity value by

mr(z) := m(T(z,e), T(rot(z),e)) € F.

We can now define the multiset .45, : F+ — F associated to the traces T on bus b by:

My (T) = Z Z Z mr(2) 0rgp(z), TEFT

(T,A,1)ET (6,m,b")€l 2EDn 1.
b'=b

where 0, ;.. (») is the Kronecker delta function that is 1 if 7 = or(2) and 0 otherwise. In
words, the sum is over all traces, over all interactions for the associated AIR, and then over the
hyperprism domain of the trace matrix.

We say that a bus b is balanced with respect to T if .4 is identically zero, i.e., A5 p(7) =0
for all 7 € F*. In order for the circuit € to be satisfied, we require all buses to be balanced,
ie., My, =0 for all b.

3.4.2. LogUp statement. It is well-known to practitioners [PH23, Ope25a] that F-multiset bal-
ancing can be cryptographically proven using LogUp. We summarize the procedure and the
LogUp statement to prove below.

We first reduce the multi-bus balancing problem to a single bus by noting the injection

F+ x (F — {0}) — F*

given by concatenation. This means that we can replace the message value o7 (z) with o7 (2) || b
for a given bus b and ensure that messages from different buses cannot coincide. Hence vanishing
of each multiset .#5 ; over all buses b is equivalent to vanishing of the global multiset

%‘J’(T) = Z Z Z mT(z) : 57’0._1.(2) o, TE€E F.

(T,A,ET (&,7,b)el 2ED 1.

Define the polynomial hash hg : Ft — Fexy by hg(oo,...,00) = 0o + Bo1 + ...+ Bloy. If we

decompose & = (51, . - - , Ojen(s)) With each ; an F-valued polynomial, then we have an F-valued
polynomial
len(&)
hg(6||b) = BT+ > g e,
j=1

in 2w variables.
For the LogUp protocol, the prover transcript must sample two challenges «, 5 € Feys.

Theorem 3.4.3 (LogUp, imprecise version). Let T be a collection of trace matrices for a circuit
C. For a, € Feyy independent and uniformly random, if

(2), T(rot(z))) _
(3.10) Z Z Z aJth o'||b)((2), T(rot(2))) =0

(T,A,1)ET (&,/m,b)el 2EDn .

then My vanishes (i.e., all buses are balanced) with high probability.

We analyze the soundness of Theorem 3.4.3 in Theorem 4.2.1.

16 OPENVM CONTRIBUTORS

3.4.4. Fractional sumcheck via GKR. First, observe we can switch the order of the last two
sums in (3.10) to get

(T, Toot(z) | _
22 X rnGne, Ty | ="

(T,A,1)€T \2EDny (6,10,b)eT

Let it = max(nr,0). Assuming that F is prime and hence 2 is invertible in F, the above is
equivalent to the condition that

(3.11) Z omin(n.0) Z Z m(T(z),Trot(,zN)) _0

(T.A.ET 2D (mmyer @ T he(a || b)(T(2), Trot(2))

where we use the lift from §2.4 in the case nt < 0.

The protocol for proving (3.11) will be a variation of the LogUp—GKR protocol described in
[PH23, §3], which we now describe. The basic idea is to rewrite the sum (3.11) as a fractional
sumcheck and then compute the fractional sumcheck by applying the GKR protocol to a layered
circuit. We use a single layered circuit to handle the sum over all trace matrices.

In order to set up the fractional sumcheck and handle all trace matrices together, we construct
an injection

70 | D X T Hegng e,
(T,ADeT
where npogup = [logy (3 5 277 |1])] as follows:

Use Lemma 2.8.1 to get an injection 7' : | |¢ Hpp X I < Hpy . Let wp € D denote the
generator of D. For (T, A,I) € T, (wh,z) € Da, and (&,1,b) € I, we define
(3.12) gr(Wh, x, (6,mm,b)) = (bing(), /' (x, (6,7, b)))
where j1 denotes the restriction of j to the (T, A, I)-th component.

Define functions p,q : Heypp,,o, — Fext as the extension by zero (resp. a) along j of the
numerator (resp. denominator) of the summand in (3.11). More explicitly,

p(y) = 2000 (T(2), Troy(2))
q(y) = o+ hg(6 || b)(T(2), Trot(2))

if there exists (T, A,I) € T,z € Dy, (6,m,b) € I such that yr(z, (6,m,0)) =y and p(y) =
0,q(y) = a otherwise®.
Let p,G € Fexs[Y1, -+, Yoqnp,,u,) be the multilinear extensions of p and ¢. By expanding the

equations for p, ¢ in terms of convolutions with the equality polynomial, we get

(313) pY)= 3 2O 3 S eq(¥ gr(x (6m,)) - m(T(2), T (2))

(T,A,1)eT 2€Dsy. (6,1m,b)el
(B14) d¥)=a+ > > > eqY,yr(z (6,1m,b)) hs(6 | b)(T(2), Trot(2))
(T,A,1)ET 2€D5L. (&,m,b)e]

Protocol 3.4.5 (LogUp, fractional sumcheck via GKR, multiple AIRs). The vanishing of
(3.10) is equivalent to the vanishing of

(3.15) 3 ggia

YEHetnp 0y

3We set q(y) = a as the default value to avoid divison by zero.

SWIRL 17

There exists a layered circuit such that application of the GKR protocol to the layered circuit
reduces the computation of the sum (3.15) to the evaluation of p(€) and G(€) at a randomly

sampled &€ € FétrLosur

ext

To complete the LogUp protocol, we explain how to reduce the evaluation claims on the
“input layer” p(€) and G(€) to polynomial opening claims on the trace polynomials and their
rotational convolutions. The idea is simply to massage (3.13) and (3.14) for Y = £ until we can

NLogUp —NT

apply (non-fractional) sumcheck. Let &€ = &, || &, || &; for &, € FE,,, &, € FIT &, € Tk
We use formula (3.12) and the property of j from Lemma 2.8.1 to see that

eq(€7 .]T(wiD? CC, (&7 T;’L, b))) = eq(gla blng(Z)) eq(€2? ZC) eq(€37 bT,ﬁ')
for some br s € Hyy,,,,—ap. This element depends on (T, A,I) and (6,7,b) € I but we
omitted some notation for brevity. We interpolate (w%,,z) ~ eq(£1, bing(i)) eq(&2, @) into a
prismalinear polynomial by interpolating over D to get

(3.16) edi, ¢, (2. X) = | D eap(Z,wp)eqr, (&, bine(i)) | eqn, (45, X)
i€[2¢]
which is a polynomial in F[Z, X].
We conclude that p(€) and §(€) — a can both be written in the form

> Y oedk o (2) Y eq(€sbrs) C(T(2), Trot(2))
(T,A,1)eT \z€Da (6,7m,b)el
Recall that we constructed j so that by s is efficiently computable by the verifier. We can
evaluate sums of the above form using batch sumcheck:

Protocol 3.4.6 (LogUp, input layer evaluation via batch sumcheck). Fiz § = &; || &, [| &3 for
& €T, & € FIT €, € Fots"» " The evaluations of p(&) and §(€) — a are equivalent to
the computations of

sump = Y eqi o (2) Y. eq(€sbrs) m(T(2), Tror(2))

z€Ds . (6,m,b)el
sumgr= Y eqf o (2) > eq(€sbrs) - hs(6] b)(T(2), Tror(2))
z€DaL. (6,m,b)el
for each (T, A, I) € T together with the computations of
(3.17) Z gmin(nr.0) sums ¢ ; and Z sumg 7
(T,A,1)eT (T,A1eT

The computations of (3.17) are done directly by the verifier. The batched sumcheck protocol
can be applied to reduce the computations of sump 1 and sumg 1 for all (T, A, I) € T to the
evaluations of

(3.18) et o (Pir) Y eq(€s,br.6) (T (ray), Trot(ray))
(6,m,b)el
(3.19) edt ¢ (ax) Y. €a(€s,br.6) hp(6[|D)(T(Fag), Trot(riy))
(6,m,b)el
for each (T, I) with respect to a shared random v € FX3 . The random r € F*5 is sampled

and used across the parallel sumchecks, where 7., denotes its truncation to FPTT!,

18 OPENVM CONTRIBUTORS

The evaluations of (3.18) and (3.19) reduce to the evaluation of
T(rny) and (T % frot) (T)

by requiring the verzﬁer to directly evaluate (3.18) and (3. 19) in terms of Tip, T(Pnp), Trot (o),
where we let v, =12 " for nt <0 so that T(ri.) = T(rp.).

We do not apply this protocol directly in the proof system. Instead, we combine it with the
ZeroCheck protocol and run Protocol 3.5.1 below.

3.5. Batch constraint sumcheck. Observe that Protocol 3.3.4 (ZeroCheck) and Protocol
3.4.6 (LogUp input layer) both consist of batch sumchecks and the batching occurs over the
same set of domains, namely those corresponding to 7. We combine them into a single protocol
to optimize the batching.

Protocol 3.5.1 (Batch constraint sumcheck). Let ny = maxres i where gy = max(nt,0).
Let A € Feoyy and € € Feimax(nrniogup) o independently randomly sampled. The ZeroCheck

ext
protocol on the collection T = {(T,A,I)} together with the evaluations of the LogUp GKR
input layer polynomials p(€),G(€) reduces to the following collection of sumchecks: for each

(T, A, I), summations over Dj.. of the multivariate polynomials

eq(1)1€2,2) Y, MO C(T(2), Teot(2)) - Snr(2)

(C,S)eA

(3.20) eqzl,gQ(Z) Z eq (&3, bT,fr) 'm(T(Z),Trot(Z))
(6,,b)El

eqt ¢ (Z) Y (&, bre) hs(6]|b)(T(Z), Tror(2))

(6, m,b)el

where &, = (&1,-..,&) €F € = (Cov1y -, E0viny) €EFLE and eqzl’52 is defined in 3.16.

The sumchecks above are batched together across all (T, A,I) € T to reduce the computation
of the summations to the evaluations of the polynomials (3.20) above at vz, with respect to
a shared random v € FI3 M. The evaluations of the polynomials (3.20) at r reduce to the
evaluations of R R

T(rn.) and Trot(Pnr)
by requiring the verifier to directly evaluate the rest.

3.6. Stacked opening reduction. At this point, the protocol has reduced all computation to
the evaluation of R R
T(rpy) and (T * frot) (Thr)
for each T € T with respect to a random r = (rg,71,...,7n,) € IFZ)QH. We now describe
the protocol to reduce these evaluation claims to polynomial opening claims of the stacked
polynomials defined in §3.2.
Recall that the T € T are partitioned. As described in §3.2, we commit to the trace matrices

in 7 using multiple commitments

_ pre,1 pre,Mpre common cache,1 cache,Mcache
C= {Comstack,k:’ Tt Comstack k 7C0mbtack,k ’ omstack,k:7 Tt Comstackﬁ }

For all subsequent discussion, all commitments can be treated uniformly (although practical
implementations may take advantage of the explicit partition structure*). Let C denote the set

4The implementation may treat preprocessed and cached commitments in the same specialized way, which
uses the fact that it is a commitment to a single matrix. At this point in the protocol, there is no distinction
between preprocessed versus cached commitments.

SWIRL 19

of all commitments. We will view the partitioning of the columns of the trace matrices as a
surjective map
c: |_| [wr] — C.
TeT
For a given Com € C, in this section we will use Tcom to denote the set of matrices obtained by
taking the sub-matrices of T € T corresponding to ¢~!(Com), excluding empty matrices. Let

LCom * |_| DTLT X [wT] - Dnstack X [wCom]
TETCom

denote the injection defining the stacking of hyperprisms from (3.1), with wcom = W, stack
defined in §3.2 as a function of the trace heights and ngack. To reduce notation, we use wr to
denote the width of the sub-matrix.

We wish to prove the evaluations of #;(ry,..), (£; % &rot) (Tny) for all T € T and j € [wr]. We
proceed by grouping the column indices j by their commitment ¢(j). Thus we fix Com € C and
focus on evaluations for T' € Tcom. We switch to using fj to denote the j-th column of T (as
opposed to T) for j € [wr]. Let {dcom,j }j'€ween] denote the stacked polynomials corresponding
to Com.

The idea is to use (3.2) to express the evaluations as sumchecks. Let 7y = max(nr,0). For

2 € Doy let 2/ = 25 || 255 with 27 € Djs,.. We define
ol
: ot 2= ifngp <0
inp ny(Z) = Z2T -1 !

For np < 0, this is the univariate polynomial that equals 1 on D2"") and 0 on the rest of D.
Below we also use edp,, . to refer to edo-nr, a8 a polynomial in two variables when ny < 0.

Recall the property from Lemma 2.8.1 that tcom(2,j) = (2| b, jr,;) for some efficiently
computable by ; € H,_,, . —n,. Using this and combining (2.1) and (3.2), we observe that for
variables Z = (Z, X1,..., Xn,),

Y nrt
BZ) = Y Y deomin, (s vequ, o (2hnybry) e, (2. 2)
ZED"T z/eD”stack
(3.21) = > dcomyr, (2)inpur(z0) edn, (2hps Z)edn, . (Zhap 1)
z' €D,

stack
A similar argument shows that
(3.22)
(fj * Firot)(Z) = Z qcom.jr.; (Z,)inD,nT(Z(l))’%rot,DnT (%5ps Z) €dm,

I
Lstack — AT (z>'7LT ’ bT,j).
z' €D,

stack

We used eq with subscripts to clarify the domains, but we drop this below to simplify notation.

We have formulated the evaluations (3.21) and (3.22) as sumchecks over the same domain
D, We can now apply the batch sumcheck protocol over all Com € C, all T € Tcom, and
all j € [wr).

Protocol 3.6.1 (Stacked opening reduction). Let T be a collection of partitioned trace matrices
and let C be the set of commitments corresponding to the partitioning. Let ny = maxres nr.

Letr €]Fgftﬂ. The batched sumcheck protocol can be applied to reduce the evaluations of

T(rny) and (T % fixot) (Tny), T €T

20 OPENVM CONTRIBUTORS

to the evaluations of the polynomials
qcom,jr.; (W)inD g (o) €4y, Tny) €Q(Us iy, BT 5)
choijT,j (u)inD,nT (uo)’%mt (uﬁT’ r’ﬂT) eq(u>ﬁT) bT,j)

for all Com € C, T € Tcom, and j € [wr] for a shared random u € Flz** 1. These evaluations
reduce to the evaluations of

dComJ’ (u)
for each Com € C, j' € [wcom| by requiring the verifier to directly evaluate the rest.

Recall that in keeping with notation of §3.5, we let r,,. =72 * for np < 0.

3.7. WHIR. Finally, we must prove the evaluation claims of the stacked polynomials dcom,; (@)
at a random u € Fg;g‘“k“. We treat each commitment separately, so we drop the subscript
Com and consider the prismalinear polynomials §; € F[Z, X1,..., X,_,..] for j € [wetack]-
Recall from §3.2.3 that associated to each ¢; we also have the multilinear polynomial ¢; mLE €
F[X1,..., Xnou+¢] and the Reed-Solomon codeword RS(g;) : £ — F. The polynomials §; and

d;,mLE satisfy the relation
(2, X) = gee(2*, 2%, 2%, X).
then let

If u = (’U,O"U/l, ‘e 7u7?:stack)

2271

~ 2 Nstack +£
U= (U0, UGy« oy UG s ULy e ey Uny) EF)

ext

We have reduced to proving the evaluation claims of multilinear polynomials ¢; mr.e at .
This is now a classical batch polynomial opening problem. We use WHIR ([ACFY24]) as a
multilinear polynomial commitment scheme (PCS) with algebraic batching to prove the claims.

Protocol 3.7.1 (Batch WHIR, single opening point). Sample a random p € Fey. Define the
algebraic batching
RS(g)" =) /"' RS(g;).

J

The evaluation claims §;(u) < v; can be proven by running the WHIR protocol to estab-
lish proximity of RS(q)" to the constrained Reed—Solomon code CRS[F, L, £ + ngtack, W, o] with
W(Z,X) =27 eq(X,u) ando =3, AT

3.8. SWIRL protocol in full. We outline the full non-interactive STARK protocol here. We
recall (cf. §2.6) this protocol is obtained by applying the BCS transform to an IOP. We state
the protocol in terms of the Fiat—Shamir transcript, and we leave it to the reader to infer the
corresponding IOP.

(i) (Key generation) The prover and verifier agree on the circuit € = {(A,I)} before

starting the protocol. The prover generates commitments Comstr:éll(R Comstr:ézl;"e
to any preprocessed trace. 7 7

(ii) The prover starts with a collection of partitioned trace matrices T = {(T, A4,I)}. The
map (T, A, I) — (A, I) from T — € is injective but not necessarily surjective (i.e., there
may be optional AIRs).

(iii) Transcript observes an unverified® hash of the verifying key to protect against weak
Fiat—Shamir.

(iv) Transcript observes all public values from the proof.

5Here unverified means from the perspective of the verifier. The hash may be externally verified prior to
initiation of the protocol.

SWIRL 21

(v) §3.2: The prover computes the stacked PCS commitments Comggay", {Comzta;?f,i} for
j=1,...,Mcache- The transcript observes these commitments. The prover computes
the stacked PCS commitments as follows:

(a) The prover computes the piecewise stacking maps tcommon; { tcache,; } and uses them
to define the stacked trace matrices Qcommon, { Qcache,; }-

(b) The prover computes the Reed-Solomon (RS) codewords for the matrix column
vectors to get matrices RS(Qcommon)s {RS(Qcache,j) }-

(¢) The prover computes the Merkle trees and Merkle roots of the RS codeword ma-
trices.

(vi) The fractional sumcheck protocol from Protocol 3.4.5 is applied. The transcript samples
random «, B € Fey to be used in the denominator terms of the fractional sum. The GKR
layered circuit is described in [PH23, Section 3.1]. The witness for the layered circuit
consists of functions p;, g; : H; — Fey forlayers j = 0,...,{+npogup. The witness func-
tions are recursively defined starting from layer £ + npogup With (Petnpopups @tnrosop)
defined as the evaluations of (p,§) and proceeding down to layer 0 using the recursive
definition®

pi-1(y) = p;(0,y)g; (L, y) + p;(1,4)q;(0,y)
aj-1(y) = ¢;(0,9)q;(1,y)

The GKR protocol proceeds in rounds j = 1,...,£ 4+ npogup. In round 7, the prover

starts with the MLEs p;_1,§;—1 of pj_1,¢j—1. The verifier has evaluation claims of
ﬁj,l(ﬁ(jfl)), cjj,l(ﬁ(jfl)) for a randomly sampled ¢V~Y ¢ F/! from the last round.
Note 5(0) is the empty vector and pg, §o are constants. The value 2—8 is the claimed
fractional sum.

(a) Inround j, the prover and verifier apply the batch sumcheck protocol to the MLEs

Dj—1,Gj—1 using the equalities

ﬁjfl(Y) = Z equl(Yvy) : (ﬁ](ovy)%(lay) +ﬁ](17y)QJ(07y))
yeH; 1

Gi1(Y)= Y eq;_1(Y,9) (4;(0,9)d(1,v))
yeH; 1

In the batch sumcheck, the transcript samples randomness A; € Fey for batching

and the protocol reduces the evaluation claims of ﬁj—l(ﬁ(j_l)), (fj—l(E(j_l)) to the
evaluation claims of

(323) ﬁj (0’ p(j_l))’ﬁj(la p(j_l))v dj (Ov p(j_l))’ ij(l, p(j_l))
for a randomly sampled pU—1 € ngt.
(b) Observe that p;(e, pi=1), g;(e, pU~1) are linear polynomials. The transcript ob-
serves the claimed linear polynomials in terms of their evaluation claims (3.23).
(c) The transcript samples another random p; € Fey. The protocol uses p; to re-
duce the evaluation claims of ; (0, p(j’l)),ﬁj(l, pY=1) to the evaluation claim of
ﬁj(ﬁ(j)Y with ¢ = (117, pU~V). Similarly, it reduces the denominator evaluation

claim to the evaluation claim of §; (£ ()). Now proceed to the next round of GKR.

6The choice to evaluate 0, 1 from the left makes no theoretical difference, but leads to a better memory layout
in practical implementations where hypercube coordinates are represented as little endian integers.

22 OPENVM CONTRIBUTORS

(vii) Prover and verifier apply a batch constraint sumcheck for ZeroCheck and the evaluation
claims of the input layer of the LogUp GKR circuit. Prover and verifier sample two
random elements A, p € Feyy for batching purposes. The) is used for algebraic batching
of constraint polynomials per AIR. The p is the batching factor in the batch sumcheck.
The protocol can also use a single random element A for both batching purposes, but
we distinguish them to improve the soundness of the protocol. The batch sumcheck is
applied as described in Protocol 3.5.1, where the random vector & € Fﬁ;ﬂg“’bal is set
to equal the randomly sampled S(H"L"g‘“’) from the last round of GKR together with
additional sampled elements if ny0gUp < Nglobal-

In total the batch sumcheck batches 37| polynomials. If we let Sp,T»8q, T Szc, T de-
note the sumcheck claims associated with a single trace T € T for the LogUp numerator
claim, LogUp denominator claim, and ZeroCheck claim, then the total ordering of the
batch sumcheck is sp T, S¢, Ty, -+ -3 Sp, T35 S, T S2¢,T1 5 - - - » Sz, T}, Where the total or-
dering of 7 is in descending order of nt (with tie breaks determined by ordering of the
AIRs in the verifying key).

(viii) Apply Protocol 3.6.1 to reduce the evaluation claims of T and T % Aot at 7. for each
T € T to evaluation claims of Gcom, ;7 (w) for a random w € Flsteck 1,

(ix) Apply Protocol 3.7.1 to prove the evaluation claims of gcom ;- (u) via WHIR polynomial
opening proofs with respect to the commitments

pre,j) common cache,jy
{Comstack,k}J:vamprc’ ComStaCk,k ’ {Comstack,k}J:Lm,mcache

generated in steps (i),(iil). The polynomials fcom, ;- are algebraically batched together,
across all commitments. The WHIR protocol is applied to the batched polynomial as
described in [ACFY24, §2.1.3].

4. SECURITY ANALYSIS

We analyze the round-by-round soundness [CCH™ 19] and round-by-round proof of knowledge
[CMS19] of the proof system as an interactive oracle proof (IOP).

4.1. RBR soundness of batch sumcheck. Since our protocol makes multiple uses of batch
sumcheck, we start by reviewing the round-by-round (RBR) soundness of batch sumcheck as
an interactive proof (IP).

Theorem 4.1.1 (Batched sumcheck, front-loaded, with univariate skip). Protocol 2.7.4 has
round-by-round knowledge soundness with error

c a { m—1 do d }
= max) 7
“Fext | |Fext | |]Fext |

where we use the notation of Protocol 2.7.4 and

e m is the number of polynomials being bafched, R
e d; (resp. do) is the mazimum of degx (f:) (resp. degz(fi)) over all i,
nd;.

=1,...,

Proof. The front-loading of polynomials of different variables does not affect the soundness
analysis, so we consider batch sumcheck over polynomials all of n 4+ 1 variables. Algebraic
batching introduces an extra round with a newly sampled batching randomness A. By the
Schwartz—Zippel lemma applied to Y~ A" le; € Fex[A], we get error ‘T]?e:tll. The error for
the subsequent sumcheck rounds follows from the RBR soundness error of standard sumcheck
[CCHT19, LFKN92]. We emphasize the & term to highlight the contribution from the

univariate skip round.

SWIRL 23

RBR knowledge soundness of algebraic batching is immediate since the sum claims are
included in the transcript prior to batching. Round-by-round proof of knowledge [CMS19] of
sumcheck is also immediate since the witness in each round is directly included in the transcript.

O

4.2. RBR soundness of the protocol. We analyze the RBR soundness

Theorem 4.2.1 (Interactions via LogUp-GKR). Protocol 3.4.5 has round-by-round knowledge
soundness with error

(4.1) Elogup = max{

(maxg len(6) + 1)(|supp A7| —1) 3 }
|cht| ’ |cht|

where maxg len(d) is the mazimum length of any message & in any interaction I in the circuit,
and |supp | is the cardinality of the support of the global LogUp multiset (i.e., it is the number
of distinct interaction messages in BT across all traces).

Proof. We separate the protocol into: (i) an initial round where «, 8 are sampled and fractional
sum claim is computed, and (ii) the rounds comprising the GKR protocol. For (i), the soundness

error is proven to be bounded by (axelen(@)-tD(supp #r|=1) 3, (00254, Theorem 3.4]. For (i),

ext

the RBR soundness error follows from that of the batch sumcheck protocol [CCH'19] where
the sumcheck polynomial has per-variable degree 3 and 2 polynomials are batched. O

Theorem 4.2.2 (Batch constraint sumcheck). For a constraint-selector pair (C,S) € A, let
d(c,s) denote the sum of the degree of C' and the mazimum degree of S in any variable. For
interaction (6,m,b) € I, let ds s p) = max(deg(d),deg(m)). Let d(a 1) denote the mazimum
of all dic.,sy and ds) over all constraints and interactions that appear in (A,).

Protocol 3.5.1 has round-by-round knowledge soundness with error

2 —1+ngy Ne—1 3|7 -1 (de+1)(26-1) d@+1}
|Fext| ’ |]Fext| ’ |Fext‘ ’ |Fext| , |Fext|

(4.2) Ebe = max{

where

e Ne = maxacel|A| is the mazimum number of constraints in any individual AIR A =
{(C,S)} in the circuit C,

o |T| < |C| is the number of nonempty trace matrices,

e de is the maximum of d(4 ry over all (A,I) € €,

Proof. The RBR soundness error is the maximum over the errors in the following groups of
rounds that make up Protocol 3.5.1.

ZeroCheck reduction: the transcript samples £ € Fﬁ;max(m’n“g“). For ZeroCheck we only
consider the element & = & || &, € FL"7. Suppose there exists (T, A) € T and a constraint
(C,S) € A that is not satisfied by the trace T. the committed traces. Then the polynomial
CN'T(Z) is not identically zero. Note that 5T(Z) is prismalinear in Z. By the Schwartz—Zippel

lemma, the probability that Cr (&Y =0is

26 —1+ng
T Fex]
This contributes the error for this round.
Constraint algebraic batching: suppose that we have aT(Z) not identically zero as above,
for a particular (C,S) € A. Furthermore Cp(¢') # 0. Then the probability that randomly
sampled A can result in algebraically batched Z(C,S)EA)\(C’S)éT(é/) =0is < ‘?‘71

[Feoxt|

again by

24 OPENVM CONTRIBUTORS

Schwartz—Zippel. Taking the maximum over all AIRs A € @, we conclude that the error for
this round is
Ne —1
o ‘chtl '
The remaining rounds comprise the batch sumcheck protocol applied to 3|T| polynomials.
Applying Theorem 4.1.1 to the polynomials as stated in Protocol 3.5.1, we get the error term

{3‘.T| —1 (de +1)(2°—1) de +1}
max R R .
|Fext | “Fext | |]Fext |

Here we use the fact that degy, (%%7A(Z)) < de +1, where the +1 comes from the eq term. O

Theorem 4.2.3 (Stacked opening reduction). Protocol 3.6.1 has round-by-round knowledge
soundness with error

(4.3) Est k—maX{ZTeqszl 2.20-1) 2 }

| IFext ‘ ’ | IFext | ’ |Fext |

where) g wr is the total number of columns across all partitioned trace matrices in 7T.

Proof. The RBR soundness is a direct application of Theorem 4.1.1. The number of polynomials
to batch corresponds to 2 times the number of columns due to the need to handle both T and
Tyt The sumcheck polynomial has degree 2 - (2¢ — 1) in Z and degree 2 in X; because
4com,jr; is prismalinear and we observe that inp ... () edp,, (25,,Z) ey, (255, b7,5)
and inp . (20)Rrot, by, (27,, Z) €dy (24, br,;) both have degree 2° —1 in Z and degree
1in Xj;.

Tstack ~ T
0

Theorem 4.2.4 (Batch WHIR). Assume the WHIR protocol is instantiated with a proximity

parameter § < 1_7” in the unique decoding regime. Protocol 3.7.1 has round-by-round

knowledge soundness with error

stack — 1)|£
(4.4) €pWHIR = Max {(WTtaCkﬂy €WH|R}
|Fext|
where | L] = 26+ stk [is the order of the largest evaluation domain for the Reed—Solomon code,
and ewnir 1s the round-by-round soundness error from [ACFY24, Theorem 5.6].

Proof. We perform algebraic batching of the codewords before instantiating WHIR. Therefore
the soundness error is the error from the correlated agreement theorem [BCI*20]. In the unique
|£]

decoding regime, this error is (wy stack — 1) el The remaining rounds are a direct application

of WHIR with one weight polynomial. O

Theorem 4.2.5 (SWIRL IOP). The interactive oracle proof described in §3.8 has round-by-
round knowledge soundness with error

(45) max {Elogup;EbcvsstackangHlR} .

Proof. This follows by combining Theorems 4.2.1, 4.2.2, 4.2.3, and 4.2.4. 0

Corollary 4.2.6. The non-interactive protocol described in §3.8 is a SNARK in the random
oracle model (ROM) and quantum random oracle model.

Proof. This follows from Theorem 4.2.5 by applying the BCS transform [BSCS16, CMS19]. O

SWIRL 25

REFERENCES

[ACFY24] Gal Arnon, Alessandro Chiesa, Giacomo Fenzi, and Eylon Yogev. WHIR: Reed—solomon proximity
testing with super-fast verification. Cryptology ePrint Archive, Paper 2024/1586, 2024.

[BCIt20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proximity gaps
for reed-solomon codes. Cryptology ePrint Archive, Paper 2020/654, 2020.

[BDT24] Suyash Bagad, Yuval Domb, and Justin Thaler. The Sum-Check Protocol over Fields of Small Char-
acteristic. JACR Cryptol. ePrint Arch., 2024:1046, 2024.

[BSCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In Martin Hirt
and Adam Smith, editors, Theory of Cryptography, pages 31-60, Berlin, Heidelberg, 2016. Springer
Berlin Heidelberg.

[CCHT19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D. Rothblum,
and Daniel Wichs. Fiat-shamir: from practice to theory. In Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2019, page 1082-1090, New York, NY, USA,
2019. Association for Computing Machinery.

[CMS19] Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. Succinct arguments in the quantum random
oracle model. In Dennis Hofheinz and Alon Rosen, editors, Theory of Cryptography, pages 1-29, Cham,
2019. Springer International Publishing.

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: Interactive
proofs for muggles. J. ACM, 62(4), September 2015.

[Gru24] Angus Gruen. Some improvements for the PIOP for ZeroCheck. Cryptology ePrint Archive, Paper
2024/108, 2024.

[Hab22] Ulrich Habock. A summary on the FRI low degree test. Cryptology ePrint Archive, Paper 2022/1216,

2022.

[Irr25] Irreducible Team. Binius Blueprint: Batch Evaluation. https://web.archive.org/web/
20250217104020/https://www.binius.xyz/blueprint/cryptography/evaluation/, 2025. No longer
available.

[LFKN92] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods for interactive
proof systems. J. ACM, 39(4):859-868, October 1992.

[Ope25a] OpenVM Contributors. On the Soundness of Interactions via LogUp. https://github.com/
openvm-org/stark-backend/blob/main/docs/Soundness_of_Interactions_via_LogUp.pdf, 2025.

[Ope25b] OpenVM Contributors. OpenVM Whitepaper. https://openvm.dev/whitepaper.pdf, 2025.

[PH23] Shahar Papini and Ulrich Habock. Improving logarithmic derivative lookups using GKR. Cryptology
ePrint Archive, Paper 2023/1284, 2023.

[Val24] Valida Team. Valida. https://github.com/valida-xyz/valida, 2024.

[ZCF23] Hadas Zeilberger, Binyi Chen, and Ben Fisch. BaseFold: Efficient field-agnostic polynomial commit-
ment schemes from foldable codes. Cryptology ePrint Archive, Paper 2023/1705, 2023.

https://web.archive.org/web/20250217104020/https://www.binius.xyz/blueprint/cryptography/evaluation/
https://web.archive.org/web/20250217104020/https://www.binius.xyz/blueprint/cryptography/evaluation/
https://github.com/openvm-org/stark-backend/blob/main/docs/Soundness_of_Interactions_via_LogUp.pdf
https://github.com/openvm-org/stark-backend/blob/main/docs/Soundness_of_Interactions_via_LogUp.pdf
https://openvm.dev/whitepaper.pdf
https://github.com/valida-xyz/valida

	1. Introduction
	1.1. Notation
	1.2. Protocol Parameters

	2. Preliminaries
	2.1. Review of Circuit Frontend
	2.2. Representations of matrices
	2.3. Prismalinear extensions
	2.4. Univariate lifting
	2.5. Rotations
	2.6. Non-interactive protocols via BCS transform
	2.7. Sumcheck
	2.8. Evaluating piecewise multilinears

	3. Protocol Description
	3.1. Summary
	3.2. Stacked polynomial commitment
	3.3. ZeroCheck
	3.4. Interactions via LogUp GKR
	3.5. Batch constraint sumcheck
	3.6. Stacked opening reduction
	3.7. WHIR
	3.8. SWIRL protocol in full

	4. Security Analysis
	4.1. RBR soundness of batch sumcheck
	4.2. RBR soundness of the protocol

	References

