
SWIRL: STACKED WHIR

WITH INTERACTION REDUCTIONS VIA LOGUP

OPENVM CONTRIBUTORS

Abstract. We present SWIRL, a high-performance STARK designed to bridge the gap

between expressive circuit design and efficient proving. As zero-knowledge Virtual Machines
(zkVMs) grow in complexity, they increasingly rely on heterogeneous sub-components that

defy uniform constraint structures. SWIRL addresses this by using modular applications

of sumcheck to interoperate between computations over polynomials on multiple domains.
Notably, each phase of the protocol uses the domain most suitable for performance. This

involves use of piecewise hypercube stacking to go between uniform phases such as GKR

[GKR15] and WHIR [ACFY24] and heterogeneous phases such as ZeroCheck. We further
generalize the “univariate skip” technique [Gru24] to offer tunable optimizations for more

general sumcheck protocols. Instantiated with the WHIR polynomial commitment scheme,

SWIRL yields a SNARK with fast verification, compact proofs, and provable post-quantum
security.

Contents

1. Introduction 2
1.1. Notation 2
1.2. Protocol Parameters 3
2. Preliminaries 4
2.1. Review of Circuit Frontend 4
2.2. Representations of matrices 5
2.3. Prismalinear extensions 5
2.4. Univariate lifting 6
2.5. Rotations 6
2.6. Non-interactive protocols via BCS transform 7
2.7. Sumcheck 7
2.8. Evaluating piecewise multilinears 9
3. Protocol Description 9
3.1. Summary 10
3.2. Stacked polynomial commitment 10
3.3. ZeroCheck 13
3.4. Interactions via LogUp GKR 14
3.5. Batch constraint sumcheck 18
3.6. Stacked opening reduction 18
3.7. WHIR 20
3.8. SWIRL protocol in full 20
4. Security Analysis 22
4.1. RBR soundness of batch sumcheck 22

Date: January 29, 2026.
Contact: info@openvm.dev.

1

info@openvm.dev

2 OPENVM CONTRIBUTORS

4.2. RBR soundness of the protocol 23
References 25

1. Introduction

Modern approaches to verifiable computation necessitate complex arithmetic circuits with
heterogeneous sub-components. These circuits, exemplified by zero-knowledge virtual machines
(zkVMs), feature intricate internal logic within components alongside varied intercommunica-
tions between them. Simultaneously, practical deployment demands fast verification times and
small proof sizes to support performant recursive proof aggregation and low-latency data trans-
fer.

In this work we introduce SWIRL, a new STARK proof system built to address the friction
between expressive circuit design and efficient proving. Our architecture focuses on three key
advancements:

• Supporting heterogeneous circuits without performance penalties: Many
proof systems accomodate heterogeneous circuit arithmetizations only by incurring ei-
ther significant penalties: the prover often computes on extraneous or “padded” data
to meet rigid layout requirements, or the verifier suffers from excessive polynomial
openings. We solve this by effectively stacking multivariate polynomials over different
domains together prior to invoking any polynomial commitment scheme. Crucially, this
stacking is efficiently verifiable due to special properties of boolean hypercubes.

• Fast verification for efficient recursion: Our system prioritizes low verification
latency and compact proof sizes, which also leads to highly performant recursive proof
aggregation. We utilize WHIR [ACFY24] as the polynomial commitment scheme, lever-
aging its verifier efficiency to minimize cryptographic overhead.

• Sumcheck-based optimizations: We extensively utilize sumcheck-based methods to
reduce prover overhead and the number of cryptographic commitments. We employ
a customized LogUp-GKR protocol to prove arbitrary multiset equality constraints
without additional witness commitments. Furthermore, we generalize the univariate
skip technique of [Gru24] to apply it to sumcheck-based protocols beyond ZeroCheck.

Our main result is:

Theorem 1.0.1 (informal, see Corollary 4.2.6). When instantiated with proximity parameter
in the unique decoding regime, SWIRL is a SNARK in the quantum random oracle model with
provable soundness.

The rest of the paper is organized as follows. In §2 we review the circuit frontend arithmetiza-
tion and develop the algebraic preliminaries used throughout the protocol. In §3 we describe the
protocol in full, separated into several components. In §4 we prove round-by-round knowledge
soundness of the protocol as an IOP and provide error calculations.

1.1. Notation. We fix a base field F of prime order p. We assume that a large power of 2
divides p − 1. We also fix an extension field Fext of F. A set L ⊆ F is smooth if it is a
multiplicative coset of F× whose order is a power of 2. Our assumption on F ensures there are
smooth subsets of large order.

• We fix a multiplicative generator g ∈ F×.

SWIRL 3

• We fix a smooth subgroup D ⊆ F× of order 2ℓ where ℓ is a protocol parameter. This D
is the univariate skip domain. For explicit computational convenience, we further fix a

generator ωD := g
p−1

2ℓ of the subgroup D.
• We denote a boolean hypercube by Hn = {0, 1}n for n ≥ 0.
• Denote Dn = D × Hn for n ≥ 0. These are the primary domains we will use for
multivariate polynomial evaluation and we will refer to them as hyperprisms.

• We extend the definition of Dn to n ≥ −ℓ by letting Dn = D ×Hn as above for n ≥ 0

and letting D−i = D(2i) = {x2i | x ∈ D} for 0 ≤ i ≤ ℓ. We fix the generator ω2i

D for

D(2i). For all n ≥ −ℓ, observe that the cardinality of Dn is 2ℓ+n.
• Let [N] = {1, 2, . . . , N}.
• Let binn : [2n] → Hn send an integer to its little-endian binary expansion.
• We define a bijection ordℓ,n : [2ℓ+n] → Dn using the lexicographic ordering of the
coordinates and the generator of D. We order Dn by the D coordinate first, followed
by the coordinates of Hn.

• We will use plain math symbols such as f to denote functions on finite sets such as
f : Dn → F. We will often implicitly use the same symbol to denote the column vector

in F2ℓ+n

whose ith entry is f(ordℓ,n(i)). If we ever need to be explicit, we will denote

ord∗ℓ,n(f) : [2
ℓ+n] → F and f⃗ ∈ F2ℓ+n

the column vector of f .
• The “hat” symbol over a function is typically used to remind the reader that the function
is a polynomial. Usually such a function is the polynomial extension of another function
on a smaller finite domain.

• In particular for f : Dn → F, we denote by f̂ ∈ F[Z,X1, . . . , Xn] the unique polynomial

such that degZ(f̂) < |D| and degXi
(f̂) < 2 for all i ∈ [n] and the restriction of f̂ |Dn = f

to Dn equals f .
• We use bold symbols to denote vectors of evaluation points (e.g., x = (x1, . . . , xn)).
We may use z or (z,x) to denote (z, x1, . . . , xn). We use F[Z,X] as a shorthand for
F[Z,X1, . . . , Xn].

• Given x = (x1, . . . , xn),y = (y1, . . . , ym) we use x ∥y to denote the concatenation
(x1, . . . , xn, y1, . . . , ym).

• We will primarily represent matrices as functions T : Dn × [w] → F where w is the
width of the matrix. In these cases the height of the matrix is h = 2ℓ+n (in particular
it is a multiple of 2ℓ). We will use the symbols w, h with subscripts to denote the width
and height of a matrix. We will try to reserve the symbol n with subscripts to denote
the hypercube dimension. We use capital letters to denote matrices. In some special
settings, we use bold capital letters (e.g., T) to emphasize that a matrix is column-wise
partitioned. This use of bold capital letters will be distinguished from the notation
F[Z,X] based on the context.

• We use δx,y to denote the Kronecker delta function. For consistency with the litera-
ture, we use eq to denote the relevant polynomial extension, which is often used as a
convolution kernel.

1.2. Protocol Parameters. We list the parameters that the protocol depend on.

• The base field F and extension field Fext.
• The univariate skip parameter ℓ and the generator of the domain D.
• The stacked dimension nstack ≥ 0 which determines the stacked domain Dnstack

.
• The hash function H used.
• The rate ρ of the constrained Reed-Solomon code.

4 OPENVM CONTRIBUTORS

• A smooth domain L ⊂ F× of order 2ℓ+nstack/ρ. All evaluation domains for Reed–
Solomon codes are subsets of L.

• The folding parameter k used in the WHIR protocol. Typically set so k ≈ log2(nstack).
• The security parameter λ used in the WHIR protocol, which determines the number of
WHIR queries.

2. Preliminaries

2.1. Review of Circuit Frontend. We will use the same definitions of AIRs, interactions,
and circuits as in [Ope25b].

Definition 2.1.1 (AIR). An algebraic intermediate representation (AIR) is a set of pairs
(Ci,Si), where Ci : F[x1, . . . , xw, y1, . . . , yw] are constraint polynomials and w is a fixed width
associated with the AIR. The Si are special selectors, to be explained below, which can be one
of All, First, Last, Transition.

A trace matrix is a matrix with entries in F where the number of rows is a power of two.
We define the height of the matrix to be the number of rows and the width to be the number
of columns. We say that a trace matrix T satisfies the AIR {(Ci,Si)} if the width of T equals
w and for each i the constraint polynomial Ci(x1, . . . , xw, y1, . . . , yw) evaluates to zero on the
following domain:

• If Si is All, then this applies to all pairs of cyclically consecutive rows (x1, . . . , xw),
(y1, . . . , yw) of T.

• If Si is First, then this applies to the first pair of cyclically consecutive rows of T.
• If Si is Last, then this applies to the pair (last row, first row) of T.
• If Si is Transition, then this applies to all pairs of non-cyclically consecutive rows – that
is, like All but except (last, first).

Note that in our definition, the height of the trace matrix is not specified by the AIR – trace
matrices of different heights can satisfy the same AIR.

In our arithmetization, we also allow each AIR to specify a partition of the columns {1, . . . , w}
of the trace matrix into parts of different types:

• Preprocessed
• Cached
• Common

This partitioning specifies to the ZK backend how data is supplied for different parts of the trace
matrix. The preprocessed trace is data that shared and agreed upon ahead of time between the
prover and verifier. The cached trace is data that is only available to the prover, but may be
cached and reused across different proofs. Lastly the common trace is the remaining data only
available to the prover. We note that if an AIR requires a preprocessed trace, then the height
of the trace matrix is fixed.

For greater flexibility, we allow multiple AIRs in the arithmetization of a single circuit. In
other words, a circuit is proved by providing multiple trace matrices. We extend the AIR arith-
metization framework with an intermediate representation for constraining relations between
different AIRs. This intermediate representation, known as interactions, was first introduced
by [Val24], building on previous interfaces for lookup tables and permutation arguments.

Definition 2.1.2 (Interactions and buses). An interaction of width w and message length
len(σ) on bus b is a triple (σ̂, m̂, b), where:

SWIRL 5

• σ̂ ∈ F[x1, . . . , xw, y1, . . . , yw]
len(σ̂) is a sequence of len(σ̂) polynomials defining the mes-

sage.
• m̂ ∈ F[x1, . . . , xw, y1, . . . , yw] is a polynomial that determines the multiplicity of the
corresponding message.

• b ∈ F \ {0} is the bus index specifying the bus. It must be nonzero.

Given a trace matrix T of width w with entry Tij on row i and column j, we say that an
interaction (σ̂, m̂, b) defined on T sends over bus b, for each row i, the image

σ̂(Ti1, . . . ,Tiw,Tnext(i)1, . . . ,Tnext(i)w) ∈ Fℓ

with multiplicity

m̂(Ti1, . . . ,Tiw,Tnext(i)1, . . . ,Tnext(i)w) ∈ F.
where next(i) is the cyclic next row in the trace matrix, i.e., next(i) = i+ 1 if i is not the last
row and next of last row is first row.

Remark 2.1.3. The width of an interaction should not be confused with its message length.
The width refers to the width of the corresponding trace matrix, whereas the message length
is the length of the message defined by each row of the trace.

In our arithmetization, an AIR is augmented with a set of interactions, where the AIR width
and interaction width coincide. An AIR may have multiple interactions, where each interaction
may have a different message length and/or bus index.

Definition 2.1.4 (Circuit). A circuit C is a collection of (A, I) where A is an AIR and I is a
collection of interactions associated with A.

2.2. Representations of matrices. In the proof system protocol, matrices will most naturally
arise as maps in the form T : Dn × [w] → F for n ≥ −ℓ. Such a map corresponds to a matrix
of height 2ℓ+n and width w. For fixed j ∈ [w], we consider tj := T (•, j) : Dn → F as a column
vector. Using the ordering map ordℓ,n : [2ℓ+n] ≃ Dn, we can identify tj with an element of

F2ℓ+n

. Separately, for each tj : Dn → F, we can take its prismalinear extension t̂j ∈ F[Z,X].
Observe that T : Dn × [w] → F can also be canonically identified with a map T : Dn → Fw.

We will implicitly make this identification and use the same notation for both. Analogously,
we will use the notation T̂ to denote (t̂1, . . . , t̂w) ∈ F[Z,X]w.

2.3. Prismalinear extensions. We review some fundamental results on polynomial interpo-
lation in multiple variables.

Lemma 2.3.1. Fix a finite subset S ⊂ F and hypercube dimension n.

(i) There exists a unique polynomial

eq ∈ F[Z,X1, . . . , Xn, Z
′, X ′

1, . . . , X
′
n]

with degZ(eq),degZ′(eq) = |S| − 1, degXi
(eq),degX′

i
(eq) = 1 such that

eq((z,x), (z′,x′)) = δ(z,x),(z′,x′)

for all z, z′ ∈ S, x,x′ ∈ Hn.
(ii) The polynomial eq satisfies the identities

eqS,n((Z,X), (Z ′,X ′)) = eqS(Z,Z
′) eqn(X,X ′)

eqn(X1 ∥X2,X
′
1 ∥X

′
2) = eqn1

(X1,X
′
1) eqn2

(X2,X
′
2),

where we use subscripts for clarity to distinguish eq defined over different domains.

6 OPENVM CONTRIBUTORS

(iii) For any function f : S×Hn → F, there exists a unique polynomial f̂ ∈ F[Z,X1, . . . , Xn]

with degZ(f) < |S|,degXi
(f) < 2 such that f̂(z,x) = f(z,x) for all (z,x) ∈ S × Hn.

Moreover f̂ is given by the explicit convolution formula

(2.1) f̂(Z,X) =
∑

(z,x)∈S×Hn

f(z,x) · eq((z,x), (Z,X))

The lemma follows from standard interpolation techniques and its proof is left to the reader.

We will call f̂ above the prismalinear extension of f . When S = {1}, this is referred to as the
multilinear extension of f : Hn → F in the literature. When n = 0, this is univariate Lagrange
interpolation over S.

2.4. Univariate lifting. Note that we allow matrices with column vectors defined on Dn → F
for −ℓ ≤ n < 0. Assume we are in this setting where n = −i for 0 ≤ i ≤ ℓ. Then Dn = D(2i)

is a subgroup of D and the prismalinear extension f̂ of f : Dn → F is a univariate polynomial

of degree < 2ℓ−i. We define the lift f̃ ∈ F[Z] of f̂ by f̃(Z) := f̂(Z2i). The lift is a univariate
polynomial of degree < 2ℓ. More specifically it is the interpolation of the function D → F : z 7→
f(z2

i

). We similarly define T̃ for matrix T : D−i × [w] → F.
We generalize the lift to all −ℓ ≤ n by defining f̃ = f̂ for n ≥ 0 and f̃ as above for n < 0. In

other words, the lift is non-trivial only for negative n, in which case f̃ is a univariate polynomial.

The lift is a lways trivial when f̂ is a polynomial in more than one variable.

2.5. Rotations. Define the rotation map

(2.2) rot : Dn → Dn : z 7→ ordℓ,n((ord
−1
ℓ,n(z) + 1) mod 2ℓ+n)

where we use the ordering map to bootstrap a notion of adjacency.

Suppose that we have a polynomial f̂ ∈ F[Z,X] and its restriction to a function f : Dn → F.
We define the rotation kernel κrot : Dn × Dn → F such that it is the unique convolution kernel
that makes the following identity hold for all z′ ∈ Dn:

f(rot(z′)) =
∑
z∈Dn

f(z)κrot(z, z
′).

We define the rotation kernel polynomial κ̂rot ∈ F[Z,X, Z ′,X ′] such that κ̂rot|Dn×Dn = κrot

and degZ(κ̂rot),degZ′(κ̂rot) < |D| and degXi
(κ̂rot),degX′

i
(κ̂rot) < 2 for all i ∈ [n]. An explicit

formula for κ̂rot is given by

(2.3) κ̂rot(Z,Z ′) =
∑

z′∈Dn

eq(rot(z′),Z) · eq(z′,Z ′)

Remark 2.5.1. Observe that for a given z ∈ Dn on the hyperprism, we have the identity

κ̂rot(z,Z
′) = eq(rot−1(z),Z ′).

We also observe that κ̂rot over the hyperprism reduces to κ̂rot over hypercube via the formula

κ̂rot,Dn((Z,X), (Z ′,X ′)) = eqD(Z, ωDZ ′) eqHn
(X,X ′)

+ eqD(Z, 1) eqD(ωDZ ′, 1)(κ̂rot,Hn
(X,X ′)− eqHn

(X,X ′))

with subscripts for emphasis.

We define the rotation convolution operator f̂ 7→ f̂ ⋆ κ̂rot : F[Z,X] → F[Z,X] by

(2.4) (f̂ ⋆ κ̂rot)(Z) =
∑
z∈Dn

f̂(z)κ̂rot(z,Z) =
∑

z′∈Dn

f̂(rot(z′)) eq(z′,Z).

SWIRL 7

Note that the sum on the right-hand side is finite and f ⋆ κ̂rot is a polynomial. Further observe

that if we start with a function f : Dn → F and take its prismalinear extension f̂ ∈ F[Z], then

f̂ ⋆ κ̂rot is the prismalinear extension of frot : Dn → F where frot(z) = f(rot(z)).

2.6. Non-interactive protocols via BCS transform. This paper focuses on the proof sys-
tem as a non-interactive protocol. The protocol is obtained by applying the BCS transform
[BSCS16] to an interactive oracle proof (IOP). As our focus is on the non-interactive setting,
we state all protocols in the non-interactive version, after BCS transform, and leave it to the
reader to infer the corresponding IOP.

In particular, instead of saying “the prover sends data to the verifier”, we will say that the
“Fiat–Shamir transcript observes the data”. Instead of saying “the verifier sends a challenge
to the prover”, we will say that the “Fiat–Shamir transcript samples a challenge”. We say
“transcript” to reference the Fiat–Shamir transcript when there is no ambiguity. The transcript
operations of observe and sample are performed separately and non-interactively by both the
prover and the verifier, where the observe operation has different behavior for the prover and
the verifier: The prover serializes all data observed in the Fiat–Shamir transcript into a proof.
The verifier deserializes the proof, and the Fiat–Shamir transcript observes the proof data in
the course of the verification algorithm.

2.7. Sumcheck. We review the sumcheck protocol (cf. [LFKN92, BDT24]) and discuss some
variations.

Protocol 2.7.1 (Sumcheck). Given f̂ ∈ F[X1, . . . , Xn], the sumcheck protocol reduces a claim

about the value of
∑

x∈Hn
f̂(x) to a claim about the value of f̂(r) at a randomly sampled vector

r ∈ Fn
ext of extension field elements.

In an interactive protocol, the random vector r is provided by the verifier. In our non-
interactive setting, it is sampled from the Fiat–Shamir transcript. The computational analysis

depends on the degree of f̂ . We give the full statement of the protocol, with greater generality,
later in Protocol 2.7.4.

We give a variation of the sumcheck protocol which is a reformulation of Gruen’s univariate
skip [Gru24]. We state it as a standalone protocol independent from its usage in ZeroCheck as
it may be of independent interest.

Protocol 2.7.2 (Sumcheck with univariate skip). Given f̂ ∈ F[Z,X1, . . . , Xn], the sumcheck
protocol may be modified with a univariate skip in the Z variable to reduce a claim about the

value of
∑

z∈Dn
f̂(z) to a claim about the value of f̂(r) at a randomly sampled vector r ∈ Fn+1

ext .

Note that the domains Dn and Hℓ+n have the same size. The difference between Proto-
col 2.7.1 over Hℓ+n and Protocol 2.7.2 over Dn is that in the latter, there is a small decrease
in security (one random Fext is sampled instead of ℓ), the prover does less computational work,
and the verifier needs to do more work in the form of higher degree polynomial interpolations.
Thus the univariate skip parameter ℓ can be tuned based on the desired prover–verifier cost
tradeoff.

The proof system protocol often encounters situations where multiple independent sumcheck
protocols need to be performed. It is well-known to practitioners that these sumchecks can be
more efficiently batched with the use of additional randomness. We describe the front-loaded
batched sumcheck protocol (cf. [Irr25]) below. We always use the front-loaded version of the
protocol, so we will simply refer to it as the batched sumcheck protocol in the rest of this paper.

Protocol 2.7.3 (Batched sumcheck, front-loaded). Let {f̂i ∈ F[X1, . . . , Xni
]}i=1,...,m be a

collection of polynomials, where the number of variables may differ by polynomial. Let n =

8 OPENVM CONTRIBUTORS

maxi ni. For r = (r1, . . . , rn) ∈ Fn
ext, let rni

= (r1, . . . , rni
). We describe a protocol to reduce

the computations of ∑
x∈Hni

f̂i(x)

to the evaluations of f̂i(rni
) for a single random vector r ∈ Fn

ext.
First, the transcript samples a random λ ∈ Fext. For each i, define

f̃i(X1, . . . , Xn) = f̂i(X1, . . . , Xni)

n∏
j=ni+1

Xj

as a polynomial in n variables. Observe that
∑

y∈Hn
f̃i(y) =

∑
x∈Hni

f̂i(x) since f̃i(y) = 0

unless yni+1 = · · · = yn = 1.

Apply algebraic batching to define f̃ =
∑

i λ
i−1f̃i ∈ F[X1, . . . , Xn]. The sumcheck claims

for each f̃i, and hence each f̂i, hold with high probability if and only if the sumcheck claim for∑
y∈Hn

f̃(y) holds. The prover and verifier apply the (not batched) sumcheck protocol to f̃ to

reduce the sumcheck claim to the evaluation of f̃(r) for a randomly sampled r ∈ Fn
ext.

Evaluation of

f̃(r) =

m∑
i=1

λi−1f̂i(rni
)

n∏
j=ni+1

rj

follows from the evaluation of f̂i(rni
) for all i by requiring the verifier to evaluate the right hand

side from the f̂i evaluations.

Batched sumcheck over hyperprisms works in exactly the same way. The protocol holds
verbatim if we replace hypercubes Hni

,Hn with hyperprisms Dni
,Dn. We state this version of

the batched sumcheck protocol, with the univariate skip, in full for future reference:

Protocol 2.7.4 (Batched sumcheck, front-loaded, with univariate skip). Let{
f̂i ∈ F[Z,X1, . . . , Xni

]
}
i=1,...,m

be a collection of polynomials, where the number of variables may differ by polynomial and
ni ≥ 0. Let n = maxi ni. For r = (r0, r1, . . . , rn) ∈ Fn+1

ext , let rni = (r0, r1, . . . , rni). We
describe a protocol to reduce the computations of∑

z∈Dni

f̂i(z)

to the evaluations of f̂i(rni
) for a single random vector r ∈ Fn+1

ext .

(1) Assume that the Fiat–Shamir transcript has observed commitments to all f̂i.

(2) The prover computes the claimed sums ci =
∑

x∈Dni
f̂i(x). The transcript observes ci

for i = 1, . . . ,m.
(3) The transcript samples random λ ∈ Fext.
(4) The verifier computes c =

∑
i λ

i−1ci.
(5) Start with a special round 0 for the univariate skip:

(a) The prover computes the univariate polynomial

s0(X) =

m∑
i=1

λi−1
∑

y∈Hni

f̂i(X,y)

with the second sum over the hypercube.

SWIRL 9

(b) The transcript observes s0 in coefficient form.
(c) The verifier checks that c =

∑
z∈D s0(z).

(d) The transcript samples random r0 ∈ Fext.
(6) Proceed through rounds j = 1, . . . , n of sumcheck. In round j, the transcript will have

already sampled a vector rj−1 = (r0, . . . , rj−1) ∈ Fj
ext.

(a) In round j, the prover computes the univariate polynomial

sj(X) =

m∑
i=1

λi−1
∑

y∈Hn−j

f̃i(rj−1, X,y).

where f̃i(Z,X1, . . . , Xn) = f̂i(Z,X1, . . . , Xni
) · Xni+1 · · ·Xn. If j > ni, then∑

y∈Hn−j
f̃i(rj−1, X,y) = f̂i(rni

)rni+1 · · · rj−1 · X. This means the prover does

not need to compute any additional sums involving f̂i once its dimensionality has
been exceeded.

(b) The transcript observes sj(1), . . . , sj(d), where d = deg sj.
(c) Verifier sets the claimed value of sj(0) to equal sj−1(rj−1)− sj(1).
(d) The transcript samples random rj ∈ Fext.
(e) Verifier interpolates the value of sj(rj) from the values sj(0), . . . , sj(d).

(7) After round n, the transcript has sampled r ∈ Fn
ext.

(8) The transcript observes evaluation claims vi for f̂i(rni
).

(9) The verifier checks that sn(rn) =
∑

i λ
i−1vi · rni+1 · · · rn.

We remark that the verifier can save computation if the ni are assumed to be sorted.

2.8. Evaluating piecewise multilinears. We record an observation that we learned from
[Irr25] that plays a key role in our treatment of multivariate polynomials over different domains.

Lemma 2.8.1 (Piecewise hypercube stacking). Let i ∈ I be a finite indexing set. For each
i ∈ I, let ni be a positive integer and Si a finite set. Let n,w be positive integers such that
n ≥ maxi ni and 2nw ≥

∑
i 2

ni |Si|. There exists an injection

ȷ :
⊔
i∈I

Hni
× Si ↪→ Hn × [w]

with the following property: given i ∈ I and s ∈ Si, there exists ji,s ∈ [w] and bi,s ∈ Hn−ni
such

that
ȷi(z, s) = (z ∥ bi,s, ji,s)

where ȷi denotes the restriction of ȷ to the i-th component.

Remark 2.8.2. Another important property of ȷ is that the elements ji,s and bi,s are efficiently
computable, which will be important for the verifier protocol.

3. Protocol Description

We give a technical overview of the proof system as a non-interactive protocol, deferring
security analysis to §4. The protocol will be described with respect to a fixed circuit C =
{(A1, I1), . . . , (A|C|, I|C|)}, where we fix a global ordering of the AIRs for indexing purposes.

The prover is given a collection T = {(T, AT, IT)} where each T is a trace matrix and
(AT, IT) is an AIR with interactions from the circuit C. It is required that |T| ≤ |C|, i.e., the
number of used AIRs is at most the global number of AIRs. Moreover, the list of (AT, IT) for
T ∈ T must have no duplicates. Each matrix T of width w will be partitioned as

w = wpre + wcommon + wcache,0 + . . .+ wcache,mcache
.

10 OPENVM CONTRIBUTORS

3.1. Summary. The protocol consists of the following high-level steps:

(i) The prover commits to the trace matrices using at least one commitment, where multiple
commitments are used if there are cached traces. The commitment is done using a
stacked polynomial commitment scheme for multivariate polynomials of heterogeneous
degrees. The commitment is ultimately a commitment to certain stacked polynomials.

(ii) The LogUp GKR protocol is used to reduce the interactions’ bus constraints to a claim
about the GKR input layer polynomials.

(iii) ZeroCheck/LogUp Input Layer. Reduce the claim about the GKR input layer and the
claim that AIR constraints vanish to a claim about column polynomial openings.

(iv) Reduce the column polynomial claims to opening claims for the stacked polynomials.
(v) Run the WHIR protocol to generate proofs of the opening claims.

3.2. Stacked polynomial commitment. In this section, we describe how a collection T of
trace matrices is committed to in multiple commitments using a reduction to a more typical
multilinear polynomial commitment scheme. Each T ∈ T has a partitioning of its columns into
preprocessed, common main, and a possibly empty list of cached mains. The partitioning is a
property of the associated AIR, so it is agreed upon ahead of time by the prover and verifier.
We view the matrix as a map

T : Dn × [w] → F

where n is the hypercube dimension and w is the overall width. Given the partition w =
wpre+wcommon+wcache,1+ . . .+wcache,mcache

, we let Tcommon : Dn× [wcommon] → F denote the
restriction, which corresponds to the matrix with all rows and only a subset of the columns.
We let Tpre,Tcache,j denote similar sub-matrices.

We will commit to T by:

• During proving key generation, pre-committing to each nonempty Tpre in a separate
stacked polynomial commitment.

• Committing to all {Tcommon}T∈T together in a stacked polynomial commitment de-
scribed below.

• Committing to each nonempty Tcache,j for T ∈ T in a separate stacked polynomial
commitment.

After generating the commitments, the prover transcript must observe all commitments.

Remark 3.2.1. The protocol treats the preprocessed and cached commitments in the same way,
with the only difference being whether the prover and verifier agree upon the commitment
during the key generation stage or not.

3.2.2. Stacked matrix construction. Each commitment will follow the same protocol, so below
we describe the stacked polynomial commitment scheme that commits a collection of trace
matrices into a single commitment.

We start with a collection T = {T : DnT
× [wT] → F} of trace matrices (this T is not

necessarily the same as the T mentioned in previous sections). We will describe the protocol to
commit to T in a polynomial commitment Comstack,k(T) which depends on the WHIR folding
parameter k.

The commitment Comstack,k(T) is the multivariate polynomial commitment to a different
matrix QT : Dnstack

× [wT,stack] → F. We call this the stacked trace matrix, which we presently
define. The stacked trace matrix and hence the stacked commitment depends on a protocol
parameter nstack. The protocol requires that nT ≤ nstack for all hypercube dimensions

SWIRL 11

nT . We can first consider T as a map

T :
⊔
T∈T

DnT
× [wT] → F

where we recall that −ℓ ≤ nT may be negative. Let ñT = max(nT , 0). Let wT,stack =
⌈(
∑

T wT · 2ℓ+ñT)/2ℓ+nstack⌉. Note that unlike the widths wT , the number wT,stack depends
on the hypercube dimensions nT (and in turn on the heights of the matrices T). We define an
injection

(3.1) ι :
⊔
T∈T

DnT
× [wT] ↪→

⊔
T∈T

DñT
× [wT] → Dnstack

× [wT,stack]

where the first map is induced from the canonical inclusion DnT
↪→ DñT

and the second map is
obtained from the product of identity in the D coordinate and the embedding of Lemma 2.8.1.
Let TT , ιT denote the restrictions of T, ι to the T -th component. We define the stacked matrix

QT : Dnstack
× [wT,stack] → F

by QT(z
′, j′) = T (z, j) if there exists T, z, j such that ιT (z, j) = (z′, j′) or 0 otherwise1.

Informally, QT is defined by “stacking” the columns of each T , where for nT ≥ 0 the column of
height 2ℓ+nT is stacked directly and for nT < 0 the column is expanded to a column of height
2ℓ using a stride of size 2−nT . While we defined QT with zero values outside of the image of ι,
the protocol will not impose any conditions on the values of QT outside of the image of ι.

We make the following observation, which will be a key ingredient used in later polynomial
opening proofs:

(3.2) T (z, j) =
∑

z′∈Dnstack

j′∈[wT,stack]

QT(z
′, j′)δ(z′,j′),ιT (z,j)

Equation (3.2) follows from the definition of QT and the injectivity of ι.
The commitment Comstack,k(T) is a certain Merkle tree based matrix commitment to the

low-degree extension of QT, which we review in the next section.

3.2.3. Review of Reed-Solomon codes. The polynomial commitment we use is designed for com-
patibility with the constrained Reed-Solomon code used in WHIR (cf. §3.7). It depends on a
rate parameter ρ < 1. The blowup factor is 1/ρ.

This section is general to any matrix Q so take Q = QT and n = nstack. Let L ⊂ F× be
a smooth coset of order |Dn|/ρ = 2ℓ+n/ρ. Classically, the Reed-Solomon code with field F,
evaluation domain L ⊂ F and degree 2ℓ+n is

RS[F,L, ℓ+ n] := {gRS : L → F | ∃ĝ ∈ F<2ℓ+n

[X] s.t. ∀x ∈ L, gRS(x) = ĝ(x)}.

It was observed by [ZCF23] that this code is equivalently viewed as evaluations of multilinear
polynomials:

RS[F,L, ℓ+ n] := {gRS : L → F | ∃f̂MLE ∈ F<2[X1, . . . , Xℓ+n] s.t.

∀x ∈ L, gRS(x) = f̂MLE(x
20 , x21 , . . . , x2ℓ+n−1

)}.

1Another way to say this is that QT is the extension by zero ι!(T) of T.

12 OPENVM CONTRIBUTORS

To use Reed-Solomon codes in conjunction with the univariate skip technique, we make the
further observation that

RS[F,L, ℓ+ n] := {gRS : L → F | ∃f̂ ∈ F<2ℓ,2,...,2[Z,X1, . . . , Xn] s.t.

∀x ∈ L, gRS(x) = f̂(x20 , x2ℓ , x2ℓ+1

, . . . , x2ℓ+n−1

)}

where F<2ℓ,2,...,2[Z,X1, . . . , Xn] refers to the space of multvariate polynomials of degree less than
2ℓ in Z and linear in each Xi. Note that this observation is simply a “mix” of the univariate
and multilinear cases above, with the first ℓ hyperdimensions univariate and the remaining n
hyperdimensions multilinear.

3.2.4. Matrix commitment. We will now define the polynomial commitment to Q as a certain
matrix commitment based on Reed-Solomon codes. Let q1, . . . , qw denote the w columns of
Q, so qj = Q(•, j) : Dn → F. By Lemma 2.3.1, there exists q̂j ∈ F[Z,X1, . . . , Xn] such that
q̂j(z,x) = qj(z,x) for all (z,x) ∈ Dn. We define the Reed–Solomon codeword of qj as

RS(qj) : L → F, RS(qj)(x) = q̂j(x, x
2ℓ , . . . , x2ℓ+n−1

) for x ∈ L.

We can make the above formula explicit by using the formula for q̂j given by

q̂j(Z,X) =
∑

(z,x)∈Dn

qj(z,x) eq((z,x), (Z,X))

where eq is the indicator kernel polynomial2. Combining gives us the explicit formula

(3.3) RS(qj)(x) =
∑

(z,x)∈Dn

qj(z,x) eq((z,x), (x, x
2ℓ , . . . , x2ℓ+n−1

))

We apply RS to each column qj of Q to get the matrix RS(Q) : L × [w] → F. We define
the polynomial commitment Comstack,k(Q) to be the Merkle root of the matrix RS(Q). The
Merkle tree is defined by hashing 2k strided rows of RS(Q) into a single leaf node using the
hash function H: Each leaf node is itself the Merkle root of the row-wise hashes of 2k rows of
RS(Q), where the row indices are strided by 2ℓ+n+log2(1/ρ)−k. The Merkle tree of RS(Q) has
depth ℓ+ n+ log2(1/ρ)− k. The row stride is chosen for compatibility with the folding step in
WHIR.

The commitment Comstack,k(Q) may be viewed as:

(i) the polynomial commitment to the prismalinear polynomials q̂j ,
(ii) the polynomial commitment to associated multilinear polynomials q̂j,MLE, or
(iii) the polynomial commitment to associated univariate polynomials q̂j,uni.

We will use the second view later when discussing WHIR (§3.7).

Protocol 3.2.5 (Stacked polynomial commitment). Given a collection

T = {T : DnT
× [wT] → F}

of trace matrices of different heights, the trace matrices are stacked into a single stacked trace
matrix QT. The stacked commitment Comstack,k(T) is defined to be the matrix commitment of
the matrix RS(QT). This is a polynomial commitment to the prismalinear extensions q̂j of the
columns of QT.

2This is the multivariate extension of the Kronecker delta function on Dn × Dn.

SWIRL 13

3.3. ZeroCheck. We provide a formulation of the ZeroCheck protocol tailored to our setting.
We will state ZeroCheck without relating it to LogUp first, and then put them together in the
protocol in §3.5.

Start with a collection of trace matrices T = {(T, AT, IT)} where each T is partitioned.
Recall that the AIR AT associated to a trace matrix T consists of a collection of (C,S) pairs
where C ∈ F[U1, . . . , UwT

, V1, . . . , VwT
] = F[U ,V] is the constraint polynomial and S is a

selector. Given the domain DnT
, we can view the selector as a function SnT

: DnT
→ {0, 1}.

The condition that T satisfies the constraint (C, S) is equivalent to the condition that

(3.4) C(T(z),T(rot(z))) · S(z) = 0, for all z ∈ DnT
.

3.3.1. Polynomial extension of selectors. Fix n ≥ −ℓ. Recall from Definition 2.1.1 that the
selectors we allow for fixed n are All,First, Last,Transition as functions on Dn. We provide
explicit formulas for the prismalinear extensions of these selectors.

(i) Âll is the constant function 1.

(ii) F̂irst(Z) = 1
2ℓ

Z2ℓ−1
Z−1 ·

∏n
i=1(1−Xi) if n ≥ 0 or 1

2ℓ+n
Z2ℓ+n

−1
Z−1 if n < 0.

(iii) L̂ast(Z) = 1
2ℓ

(ωDZ)2
ℓ
−1

ωDZ−1 ·
∏n

i=1 Xi if n ≥ 0 or 1
2ℓ+n

(ω
(2−n)
D Z)2

ℓ+n
−1

ω
(2−n)
D Z−1

if n < 0.

(iv) ̂Transition(Z) = 1− L̂ast(Z)

Observe that (ωDZ)2
ℓ

= Z2ℓ .

3.3.2. Constraints as polynomials. We rewrite (3.4) as

C(T̂(z), T̂rot(z)) · Ŝ(z) = 0, for all z ∈ DnT

where T̂rot = T̂ ⋆ κ̂rot is the prismalinear extension of Trot (see equation (2.4)). Let ñT =
max(nT, 0). Then using the lifts defined in §2.4, the above is equivalent to

(3.5) C(T̃(z), T̃rot(z)) · S̃(z) = 0, for all z ∈ DñT

where the only difference is when nT < 0. We caution that when nT < 0, the lift T̃rot is not

the same as T̃ ⋆ κ̂rot. We apply this lift so that the hyperprism DñT
always contains D as a

factor, which is important for batch sumcheck below.
We now take the prismalinear extension of (3.5) above as a function on DñT

to get

C̃T(Z) =
∑

z∈DñT

eq(Z, z) · C(T̃(z), T̃rot(z)) · S̃nT
(z)

The equation (3.4) is satisfied (i.e., T satisfies the constraint) if and only if the polynomial

ĈT ∈ F[Z] is identifically zero.

Given a random ξ ∈ FñT+1
ext , we then have that (3.4) holds with high probability if C̃T(ξ) = 0.

The latter is now the condition that

(3.6)
∑

z∈DñT

eq(ξ, z) · C(T̃(z), T̃rot(z)) · S̃nT
(z)

?
= 0.

The summand on the left hand side is a polynomial in z because eq, T̃, T̃rot, S̃nT
are polyno-

mials. Therefore we can apply sumcheck with univariate skip (Protocol 2.7.2) to reduce (3.6)
to an evaluation claim.

14 OPENVM CONTRIBUTORS

3.3.3. Algebraic batching of multiple constraints. The condition for T to satisfy an AIR A
(without interactions) is that T satisfies (C,S) for all (C,S) ∈ A. This is equivalent to the

vanishing of the polynomial C̃T for all (C, S) ∈ A. We use the well-known technique of algebraic
batching (cf. [Hab22, §3.3]) to combine the ZeroCheck protocol for these constraints into a single
sumcheck.

Start with a random λ ∈ Fext. By fixing a total ordering on A, fix a bijection (C,S) 7→
λ(C,S) : A → {λ0, . . . , λ|A|−1}. Define

C̃ λ
T,A(Z) =

∑
(C,S)∈A

λ(C,S) · C̃T(Z)

=
∑
z∈Dn

eq(Z, z)
∑

(C,S)∈A

λ(C,S) · C(T̃(z), T̃rot(z)) · S̃nT
(z)

(3.7)

Given a random ξ ∈ FnT+1
ext that is independently sampled from λ, then the condition that T

satisfies A holds with high probability if C̃T,A(ξ) = 0, which reduces to a sumcheck as in (3.6).

We state the ZeroCheck protocol for T by applying the ZeroCheck protocol for each (T, A)
in T and batching the sumchecks for each trace T.

Protocol 3.3.4 (ZeroCheck, multiple AIRs). Let nT = maxT∈T ñT where ñT = max(nT, 0).

Let λ ∈ Fext and ξ ∈ FnT+1
ext be independently randomly sampled. The collection T = {(T, A, I)}

satisfies the AIR constraints for all trace matrices with high probability if for each (T, A) ∈ T,
the sum

(3.8)
∑

z∈DñT

eq(ξnT
, z)

∑
(C,S)∈A

λ(C,S) · C(T̃(z), T̃rot(z)) · S̃nT
(z)

vanishes, where ξñT
is the truncation of ξ to FñT+1

ext . The batched sumcheck protocol can be
applied to reduce the computation of the sum (3.8) to the evaluation of

(3.9) eq(ξñT
, rñT

)
∑

(C,S)∈A

λ(C,S) · C(T̃(rñT
), T̃rot(rñT

)) · S̃nT
(rñT

)

for each (T, A) with respect to a shared random r ∈ FnT+1
ext . The random r ∈ FnT+1

ext is sampled

and used across the parallel sumchecks, where rñT
denotes its truncation to FñT+1

ext .
The evaluation of (3.9) reduces to the evaluation of

T̂(rnT
) and T̂rot(rnT

)

by requiring the verifier to directly evaluate (3.9) in terms of rñT
, T̂(rnT

), T̂rot(rnT
), where we

let rnT
= r2

−nT

0 for nT < 0 so that T̃(rñT
) = T̂(rnT

).

3.4. Interactions via LogUp GKR. We return to the proving context of a collection of trace
matrices T = {(T, AT, IT)} where each T is partitioned.

3.4.1. Review of F-multiset balancing. Recall the Definition 2.1.2 of interactions and buses. We
review what it means for circuit buses to balance with respect to T, with some rephrasing in
terms of our hyperprism domains.

The set of possible messages is denoted F+ =
⊔

i≥1 Fi (disjoint union). An F-multiset is a
function

M : F+ → F
that assigns an F-valued “multiplicity” to each message F+.

SWIRL 15

For (T : DnT
× [wT] → F, AT, IT) ∈ T, we have the interactions IT = {(σ̂, m̂, b)}. Recall the

rotation map rot : DnT
→ DnT

defined in (2.2). Given z ∈ DnT
, we can evaluate the message

σ̂ to get message value

σT(z) := σ̂(T(z, •),T(rot(z), •)) ∈ Flen(σ̂)

where len(σ̂) is the message length and we abuse notation to view T(z, •) : [wT] → F as an
element of FwT . We similarly define the multiplicity value by

mT(z) := m̂(T(z, •),T(rot(z), •)) ∈ F.

We can now define the multiset MT,b : F+ → F associated to the traces T on bus b by:

MT,b(τ) =
∑

(T,A,I)∈T

∑
(σ̂,m̂,b′)∈I

b′=b

∑
z∈DnT

mT(z) · δτ,σT(z), τ ∈ F+.

where δτ,σT(z) is the Kronecker delta function that is 1 if τ = σT(z) and 0 otherwise. In
words, the sum is over all traces, over all interactions for the associated AIR, and then over the
hyperprism domain of the trace matrix.

We say that a bus b is balanced with respect to T if MT,b is identically zero, i.e., MT,b(τ) = 0
for all τ ∈ F+. In order for the circuit C to be satisfied, we require all buses to be balanced,
i.e., MT,b = 0 for all b.

3.4.2. LogUp statement. It is well-known to practitioners [PH23, Ope25a] that F-multiset bal-
ancing can be cryptographically proven using LogUp. We summarize the procedure and the
LogUp statement to prove below.

We first reduce the multi-bus balancing problem to a single bus by noting the injection

F+ × (F− {0}) ↪→ F+

given by concatenation. This means that we can replace the message value σT (z) with σT (z) ∥ b
for a given bus b and ensure that messages from different buses cannot coincide. Hence vanishing
of each multiset MT,b over all buses b is equivalent to vanishing of the global multiset

MT(τ) =
∑

(T,A,I)∈T

∑
(σ̂,m̂,b)∈I

∑
z∈DnT

mT(z) · δτ,σT(z) ∥ b, τ ∈ F+.

Define the polynomial hash hβ : F+ → Fext by hβ(σ0, . . . , σl) = σ0 + βσ1 + . . .+ βlσl. If we
decompose σ̂ = (σ̂1, . . . , σ̂len(σ̂)) with each σ̂j an F-valued polynomial, then we have an F-valued
polynomial

hβ(σ̂ ∥ b) := βlen(σ̂)b+

len(σ̂)∑
j=1

βj−1σ̂j

in 2wT variables.
For the LogUp protocol, the prover transcript must sample two challenges α, β ∈ Fext.

Theorem 3.4.3 (LogUp, imprecise version). Let T be a collection of trace matrices for a circuit
C. For α, β ∈ Fext independent and uniformly random, if

(3.10)
∑

(T,A,I)∈T

∑
(σ̂,m̂,b)∈I

∑
z∈DnT

m̂(T(z),T(rot(z)))

α+ hβ(σ̂ ∥ b)(T(z),T(rot(z)))
= 0

then MT vanishes (i.e., all buses are balanced) with high probability.

We analyze the soundness of Theorem 3.4.3 in Theorem 4.2.1.

16 OPENVM CONTRIBUTORS

3.4.4. Fractional sumcheck via GKR. First, observe we can switch the order of the last two
sums in (3.10) to get

∑
(T,A,I)∈T

 ∑
z∈DnT

∑
(σ̂,m̂,b)∈I

m̂(T(z),T(rot(z)))

α+ hβ(σ̂ ∥ b)(T(z),T(rot(z)))

 = 0.

Let ñT = max(nT, 0). Assuming that F is prime and hence 2 is invertible in F, the above is
equivalent to the condition that

(3.11)
∑

(T,A,I)∈T

2min(nT,0)

 ∑
z∈DñT

∑
(σ̂,m̂,b)∈I

m̂(T̃(z), T̃rot(z))

α+ hβ(σ̂ ∥ b)(T̃(z), T̃rot(z))

 = 0

where we use the lift from §2.4 in the case nT < 0.
The protocol for proving (3.11) will be a variation of the LogUp–GKR protocol described in

[PH23, §3], which we now describe. The basic idea is to rewrite the sum (3.11) as a fractional
sumcheck and then compute the fractional sumcheck by applying the GKR protocol to a layered
circuit. We use a single layered circuit to handle the sum over all trace matrices.

In order to set up the fractional sumcheck and handle all trace matrices together, we construct
an injection

ȷ :
⊔

(T,A,I)∈T

DñT
× I ↪→ Hℓ+nLogUp

where nLogUp = ⌈log2(
∑

T 2ñT |I|)⌉ as follows:
Use Lemma 2.8.1 to get an injection ȷ′ :

⊔
T HñT

× I ↪→ HnLogUp
. Let ωD ∈ D denote the

generator of D. For (T, A, I) ∈ T, (ωi
D,x) ∈ DñT

and (σ̂, m̂, b) ∈ I, we define

(3.12) ȷT(ω
i
D,x, (σ̂, m̂, b)) = (binℓ(i), ȷ

′(x, (σ̂, m̂, b)))

where ȷT denotes the restriction of ȷ to the (T, A, I)-th component.
Define functions p, q : Hℓ+nLogUp

→ Fext as the extension by zero (resp. α) along ȷ of the
numerator (resp. denominator) of the summand in (3.11). More explicitly,

p(y) = 2min(nT,0)m̂(T̃(z), T̃rot(z))

q(y) = α+ hβ(σ̂ ∥ b)(T̃(z), T̃rot(z))

if there exists (T, A, I) ∈ T, z ∈ DñT
, (σ̂, m̂, b) ∈ I such that ȷT(z, (σ̂, m̂, b)) = y and p(y) =

0, q(y) = α otherwise3.
Let p̂, q̂ ∈ Fext[Y1, . . . , Yℓ+nLogUp

] be the multilinear extensions of p and q. By expanding the
equations for p̂, q̂ in terms of convolutions with the equality polynomial, we get

p̂(Y) =
∑

(T,A,I)∈T

2min(nT,0)
∑

z∈DñT

∑
(σ̂,m̂,b)∈I

eq(Y , ȷT(z, (σ̂, m̂, b))) · m̂(T̃(z), T̃rot(z))(3.13)

q̂(Y) = α+
∑

(T,A,I)∈T

∑
z∈DñT

∑
(σ̂,m̂,b)∈I

eq(Y , ȷT(z, (σ̂, m̂, b))) · hβ(σ̂ ∥ b)(T̃(z), T̃rot(z))(3.14)

Protocol 3.4.5 (LogUp, fractional sumcheck via GKR, multiple AIRs). The vanishing of
(3.10) is equivalent to the vanishing of

(3.15)
∑

y∈Hℓ+nLogUp

p̂(y)

q̂(y)
= 0.

3We set q(y) = α as the default value to avoid divison by zero.

SWIRL 17

There exists a layered circuit such that application of the GKR protocol to the layered circuit
reduces the computation of the sum (3.15) to the evaluation of p̂(ξ) and q̂(ξ) at a randomly

sampled ξ ∈ Fℓ+nLogUp

ext .

To complete the LogUp protocol, we explain how to reduce the evaluation claims on the
“input layer” p̂(ξ) and q̂(ξ) to polynomial opening claims on the trace polynomials and their
rotational convolutions. The idea is simply to massage (3.13) and (3.14) for Y = ξ until we can

apply (non-fractional) sumcheck. Let ξ = ξ1 ∥ ξ2 ∥ ξ3 for ξ1 ∈ Fℓ
ext, ξ2 ∈ FñT

ext, ξ3 ∈ FnLogUp−ñT

ext .
We use formula (3.12) and the property of ȷ′ from Lemma 2.8.1 to see that

eq(ξ, ȷT(ω
i
D,x, (σ̂, m̂, b))) = eq(ξ1,binℓ(i)) eq(ξ2,x) eq(ξ3, bT,σ̂)

for some bT,σ̂ ∈ HnLogUp−ñT
. This element depends on (T, A, I) and (σ̂, m̂, b) ∈ I but we

omitted some notation for brevity. We interpolate (ωi
D,x) 7→ eq(ξ1,binℓ(i)) eq(ξ2,x) into a

prismalinear polynomial by interpolating over D to get

(3.16) eq♯ξ1,ξ2
(Z,X) :=

 ∑
i∈[2ℓ]

eqD(Z, ωi
D) eqHℓ

(ξ1,binℓ(i))

 eqHñT
(ξ2,X)

which is a polynomial in F[Z,X].
We conclude that p̂(ξ) and q̂(ξ)− α can both be written in the form

∑
(T,A,I)∈T

 ∑
z∈DñT

eq♯ξ1,ξ2
(z)

∑
(σ̂,m̂,b)∈I

eq(ξ3, bT,σ̂) · Ĉ(T̃(z), T̃rot(z))


Recall that we constructed ȷ so that bT,σ̂ is efficiently computable by the verifier. We can
evaluate sums of the above form using batch sumcheck:

Protocol 3.4.6 (LogUp, input layer evaluation via batch sumcheck). Fix ξ = ξ1 ∥ ξ2 ∥ ξ3 for

ξ1 ∈ Fℓ
ext, ξ2 ∈ FñT

ext, ξ3 ∈ FnLogUp−ñT

ext . The evaluations of p̂(ξ) and q̂(ξ) − α are equivalent to
the computations of

sump̂,T,I =
∑

z∈DñT

eq♯ξ1,ξ2
(z)

∑
(σ̂,m̂,b)∈I

eq(ξ3, bT,σ̂) · m̂(T̃(z), T̃rot(z))

sumq̂,T,I =
∑

z∈DñT

eq♯ξ1,ξ2
(z)

∑
(σ̂,m̂,b)∈I

eq(ξ3, bT,σ̂) · hβ(σ̂ ∥ b)(T̃(z), T̃rot(z))

for each (T, A, I) ∈ T together with the computations of

(3.17)
∑

(T,A,I)∈T

2min(nT,0) sump̂,T,I and
∑

(T,A,I)∈T

sumq̂,T,I

The computations of (3.17) are done directly by the verifier. The batched sumcheck protocol
can be applied to reduce the computations of sump̂,T,I and sumq̂,T,I for all (T, A, I) ∈ T to the
evaluations of

eq♯ξ1,ξ2
(rñT

)
∑

(σ̂,m̂,b)∈I

eq(ξ3, bT,σ̂) · m̂(T̃(rñT
), T̃rot(rñT

))(3.18)

eq♯ξ1,ξ2
(rñT

)
∑

(σ̂,m̂,b)∈I

eq(ξ3, bT,σ̂) · hβ(σ̂ ∥ b)(T̃(rñT
), T̃rot(rñT

))(3.19)

for each (T, I) with respect to a shared random r ∈ FnT+1
ext . The random r ∈ FnT+1

ext is sampled

and used across the parallel sumchecks, where rñT
denotes its truncation to FñT+1

ext .

18 OPENVM CONTRIBUTORS

The evaluations of (3.18) and (3.19) reduce to the evaluation of

T̂(rnT
) and (T̂ ⋆ κ̂rot)(rnT

)

by requiring the verifier to directly evaluate (3.18) and (3.19) in terms of rñT
, T̂(rnT

), T̂rot(rnT
),

where we let rnT
= r2

−nT

0 for nT < 0 so that T̃(rñT
) = T̂(rnT

).

We do not apply this protocol directly in the proof system. Instead, we combine it with the
ZeroCheck protocol and run Protocol 3.5.1 below.

3.5. Batch constraint sumcheck. Observe that Protocol 3.3.4 (ZeroCheck) and Protocol
3.4.6 (LogUp input layer) both consist of batch sumchecks and the batching occurs over the
same set of domains, namely those corresponding to T. We combine them into a single protocol
to optimize the batching.

Protocol 3.5.1 (Batch constraint sumcheck). Let nT = maxT∈T ñT where ñT = max(nT, 0).

Let λ ∈ Fext and ξ ∈ Fℓ+max(nT ,nLogUp)
ext be independently randomly sampled. The ZeroCheck

protocol on the collection T = {(T, A, I)} together with the evaluations of the LogUp GKR
input layer polynomials p̂(ξ), q̂(ξ) reduces to the following collection of sumchecks: for each
(T, A, I), summations over DñT

of the multivariate polynomials

eq(ξ1 ∥ ξ2,Z)
∑

(C,S)∈A

λ(C,S) · C(T̃(Z), T̃rot(Z)) · S̃nT
(Z)

eq♯ξ1,ξ2
(Z)

∑
(σ̂,m̂,b)∈I

eq(ξ3, bT,σ̂) · m̂(T̃(Z), T̃rot(Z))

eq♯ξ1,ξ2
(Z)

∑
(σ̂,m̂,b)∈I

eq(ξ3, bT,σ̂) · hβ(σ̂ ∥ b)(T̃(Z), T̃rot(Z))

(3.20)

where ξ1 = (ξ1, . . . , ξℓ) ∈ Fℓ
ext, ξ2 = (ξℓ+1, . . . , ξℓ+ñT

) ∈ FñT
ext and eq♯ξ1,ξ2

is defined in 3.16.

The sumchecks above are batched together across all (T, A, I) ∈ T to reduce the computation
of the summations to the evaluations of the polynomials (3.20) above at rñT

with respect to

a shared random r ∈ FnT+1
ext . The evaluations of the polynomials (3.20) at r reduce to the

evaluations of
T̂(rnT

) and T̂rot(rnT
)

by requiring the verifier to directly evaluate the rest.

3.6. Stacked opening reduction. At this point, the protocol has reduced all computation to
the evaluation of

T̂(rnT
) and (T̂ ⋆ κ̂rot)(rnT

)

for each T ∈ T with respect to a random r = (r0, r1, . . . , rnT
) ∈ FnT+1

ext . We now describe
the protocol to reduce these evaluation claims to polynomial opening claims of the stacked
polynomials defined in §3.2.

Recall that the T ∈ T are partitioned. As described in §3.2, we commit to the trace matrices
in T using multiple commitments

C = {Compre,1
stack,k, . . . ,Com

pre,mpre

stack,k ,Comcommon
stack,k ,Comcache,1

stack,k , . . . ,Com
cache,mcache

stack,k }

For all subsequent discussion, all commitments can be treated uniformly (although practical
implementations may take advantage of the explicit partition structure4). Let C denote the set

4The implementation may treat preprocessed and cached commitments in the same specialized way, which
uses the fact that it is a commitment to a single matrix. At this point in the protocol, there is no distinction

between preprocessed versus cached commitments.

SWIRL 19

of all commitments. We will view the partitioning of the columns of the trace matrices as a
surjective map

c :
⊔
T∈T

[wT] → C.

For a given Com ∈ C, in this section we will use TCom to denote the set of matrices obtained by
taking the sub-matrices of T ∈ T corresponding to c−1(Com), excluding empty matrices. Let

ιCom :
⊔

T∈TCom

DnT
× [wT] → Dnstack

× [wCom]

denote the injection defining the stacking of hyperprisms from (3.1), with wCom := wTCom,stack

defined in §3.2 as a function of the trace heights and nstack. To reduce notation, we use wT to
denote the width of the sub-matrix.

We wish to prove the evaluations of t̂j(rnT
), (t̂j ⋆ κ̂rot)(rnT

) for all T ∈ T and j ∈ [wT]. We
proceed by grouping the column indices j by their commitment c(j). Thus we fix Com ∈ C and

focus on evaluations for T ∈ TCom. We switch to using t̂j to denote the j-th column of T̂ (as

opposed to T̂) for j ∈ [wT]. Let {q̂Com,j′}j′∈[wCom] denote the stacked polynomials corresponding
to Com.

The idea is to use (3.2) to express the evaluations as sumchecks. Let ñT = max(nT , 0). For
z′ ∈ Dnstack

, let z′ = z′
ñT

∥ z′
>ñT

with z′
ñT

∈ DñT
. We define

inD,nT
(Z) =

2nT Z2ℓ−1

Z2ℓ+nT −1
if nT < 0

1 if nT ≥ 0

For nT < 0, this is the univariate polynomial that equals 1 on D(2nT) and 0 on the rest of D.
Below we also use eqDnT

to refer to eq
D(2−nT) as a polynomial in two variables when nT < 0.

Recall the property from Lemma 2.8.1 that ιCom(z, j) = (z ∥ bT,j , jT,j) for some efficiently
computable bT,j ∈ Hnstack−ñT

. Using this and combining (2.1) and (3.2), we observe that for
variables Z = (Z,X1, . . . , XnT

),

t̂j(Z) =
∑

z∈DnT

∑
z′∈Dnstack

q̂Com,jT,j
(z′)δz′

ñT
,z · eqHnstack−ñT

(z′
>ñT

, bT,j) eqDnT
(z,Z)

=
∑

z′∈Dnstack

q̂Com,jT,j
(z′)inD,nT

(z′0) eqDnT
(z′

ñT
,Z) eqHnstack−ñT

(z′
>ñT

, bT,j).(3.21)

A similar argument shows that
(3.22)

(t̂j ⋆ κ̂rot)(Z) =
∑

z′∈Dnstack

q̂Com,jT,j
(z′)inD,nT

(z′0)κ̂rot,DnT
(z′

ñT
,Z) eqHnstack−ñT

(z′
>ñT

, bT,j).

We used eq with subscripts to clarify the domains, but we drop this below to simplify notation.
We have formulated the evaluations (3.21) and (3.22) as sumchecks over the same domain

Dnstack
. We can now apply the batch sumcheck protocol over all Com ∈ C, all T ∈ TCom, and

all j ∈ [wT].

Protocol 3.6.1 (Stacked opening reduction). Let T be a collection of partitioned trace matrices
and let C be the set of commitments corresponding to the partitioning. Let nT = maxT∈T nT.
Let r ∈ FnT+1

ext . The batched sumcheck protocol can be applied to reduce the evaluations of

T̂(rnT
) and (T̂ ⋆ κ̂rot)(rnT

), T ∈ T

20 OPENVM CONTRIBUTORS

to the evaluations of the polynomials

q̂Com,jT,j
(u)inD,nT

(u0) eq(uñT
, rnT

) eq(u>ñT
, bT,j)

q̂Com,jT,j
(u)inD,nT

(u0)κ̂rot(uñT
, rnT

) eq(u>ñT
, bT,j)

for all Com ∈ C, T ∈ TCom, and j ∈ [wT] for a shared random u ∈ Fnstack+1
ext . These evaluations

reduce to the evaluations of
q̂Com,j′(u)

for each Com ∈ C, j′ ∈ [wCom] by requiring the verifier to directly evaluate the rest.

Recall that in keeping with notation of §3.5, we let rnT
= r2

−nT

0 for nT < 0.

3.7. WHIR. Finally, we must prove the evaluation claims of the stacked polynomials q̂Com,j(u)

at a random u ∈ Fnstack+1
ext . We treat each commitment separately, so we drop the subscript

Com and consider the prismalinear polynomials q̂j ∈ F[Z,X1, . . . , Xnstack
] for j ∈ [wstack].

Recall from §3.2.3 that associated to each q̂j we also have the multilinear polynomial q̂j,MLE ∈
F[X1, . . . , Xnstack+ℓ] and the Reed-Solomon codeword RS(qj) : L → F. The polynomials q̂j and
q̂j,MLE satisfy the relation

q̂j(Z,X) = q̂j,MLE(Z
20 , Z21 , . . . , Z2ℓ−1

,X).

If u = (u0, u1, . . . , unstack
) then let

ũ = (u0, u
2
0, . . . , u

2ℓ−1

0 , u1, . . . , unstack
) ∈ Fnstack+ℓ

ext .

We have reduced to proving the evaluation claims of multilinear polynomials q̂j,MLE at ũ.
This is now a classical batch polynomial opening problem. We use WHIR ([ACFY24]) as a
multilinear polynomial commitment scheme (PCS) with algebraic batching to prove the claims.

Protocol 3.7.1 (Batch WHIR, single opening point). Sample a random µ ∈ Fext. Define the
algebraic batching

RS(q)µ =
∑
j

µj−1 RS(qj).

The evaluation claims q̂j(u)
?
= vj can be proven by running the WHIR protocol to estab-

lish proximity of RS(q)µ to the constrained Reed–Solomon code CRS[F,L, ℓ + nstack, ŵ, σ] with
ŵ(Z,X) = Z · eq(X, ũ) and σ =

∑
j µ

j−1vj.

3.8. SWIRL protocol in full. We outline the full non-interactive STARK protocol here. We
recall (cf. §2.6) this protocol is obtained by applying the BCS transform to an IOP. We state
the protocol in terms of the Fiat–Shamir transcript, and we leave it to the reader to infer the
corresponding IOP.

(i) (Key generation) The prover and verifier agree on the circuit C = {(A, I)} before

starting the protocol. The prover generates commitments Compre,1
stack,k, . . . ,Com

pre,mpre

stack,k

to any preprocessed trace.
(ii) The prover starts with a collection of partitioned trace matrices T = {(T, A, I)}. The

map (T, A, I) 7→ (A, I) from T → C is injective but not necessarily surjective (i.e., there
may be optional AIRs).

(iii) Transcript observes an unverified5 hash of the verifying key to protect against weak
Fiat–Shamir.

(iv) Transcript observes all public values from the proof.

5Here unverified means from the perspective of the verifier. The hash may be externally verified prior to
initiation of the protocol.

SWIRL 21

(v) §3.2: The prover computes the stacked PCS commitments Comcommon
stack,k , {Comcache,j

stack,k} for
j = 1, . . . ,mcache. The transcript observes these commitments. The prover computes
the stacked PCS commitments as follows:
(a) The prover computes the piecewise stacking maps ιcommon, {ιcache,j} and uses them

to define the stacked trace matrices Qcommon, {Qcache,j}.
(b) The prover computes the Reed-Solomon (RS) codewords for the matrix column

vectors to get matrices RS(Qcommon), {RS(Qcache,j)}.
(c) The prover computes the Merkle trees and Merkle roots of the RS codeword ma-

trices.
(vi) The fractional sumcheck protocol from Protocol 3.4.5 is applied. The transcript samples

random α, β ∈ Fext to be used in the denominator terms of the fractional sum. The GKR
layered circuit is described in [PH23, Section 3.1]. The witness for the layered circuit
consists of functions pj , qj : Hj → Fext for layers j = 0, . . . , ℓ+nLogUp. The witness func-
tions are recursively defined starting from layer ℓ + nLogUp with (pℓ+nLogUp , qℓ+nLogUp)
defined as the evaluations of (p̂, q̂) and proceeding down to layer 0 using the recursive
definition6

pj−1(y) = pj(0,y)qj(1,y) + pj(1,y)qj(0,y)

qj−1(y) = qj(0,y)qj(1,y)

The GKR protocol proceeds in rounds j = 1, . . . , ℓ+ nLogUp. In round j, the prover
starts with the MLEs p̂j−1, q̂j−1 of pj−1, qj−1. The verifier has evaluation claims of

p̂j−1(ξ
(j−1)), q̂j−1(ξ

(j−1)) for a randomly sampled ξ(j−1) ∈ Fj−1
ext from the last round.

Note ξ(0) is the empty vector and p̂0, q̂0 are constants. The value p0

q0
is the claimed

fractional sum.
(a) In round j, the prover and verifier apply the batch sumcheck protocol to the MLEs

p̂j−1, q̂j−1 using the equalities

p̂j−1(Y) =
∑

y∈Hj−1

eqj−1(Y ,y) ·
(
p̂j(0,y)q̂j(1,y) + p̂j(1,y)q̂j(0,y)

)
q̂j−1(Y) =

∑
y∈Hj−1

eqj−1(Y ,y) ·
(
q̂j(0,y)q̂j(1,y)

)
In the batch sumcheck, the transcript samples randomness λj ∈ Fext for batching

and the protocol reduces the evaluation claims of p̂j−1(ξ
(j−1)), q̂j−1(ξ

(j−1)) to the
evaluation claims of

(3.23) p̂j(0,ρ
(j−1)), p̂j(1,ρ

(j−1)), q̂j(0,ρ
(j−1)), q̂j(1,ρ

(j−1))

for a randomly sampled ρ(j−1) ∈ Fj
ext.

(b) Observe that p̂j(•,ρ(j−1)), q̂j(•,ρ(j−1)) are linear polynomials. The transcript ob-
serves the claimed linear polynomials in terms of their evaluation claims (3.23).

(c) The transcript samples another random µj ∈ Fext. The protocol uses µj to re-

duce the evaluation claims of p̂j(0,ρ
(j−1)), p̂j(1,ρ

(j−1)) to the evaluation claim of

p̂j(ξ
(j)) with ξ(j) = (µj ,ρ

(j−1)). Similarly, it reduces the denominator evaluation

claim to the evaluation claim of q̂j(ξ
(j)). Now proceed to the next round of GKR.

6The choice to evaluate 0, 1 from the left makes no theoretical difference, but leads to a better memory layout
in practical implementations where hypercube coordinates are represented as little endian integers.

22 OPENVM CONTRIBUTORS

(vii) Prover and verifier apply a batch constraint sumcheck for ZeroCheck and the evaluation
claims of the input layer of the LogUp GKR circuit. Prover and verifier sample two
random elements λ, µ ∈ Fext for batching purposes. The λ is used for algebraic batching
of constraint polynomials per AIR. The µ is the batching factor in the batch sumcheck.
The protocol can also use a single random element λ for both batching purposes, but
we distinguish them to improve the soundness of the protocol. The batch sumcheck is

applied as described in Protocol 3.5.1, where the random vector ξ ∈ Fℓ+nglobal

ext is set

to equal the randomly sampled ξ(ℓ+nLogUp) from the last round of GKR together with
additional sampled elements if nLogUp < nglobal.

In total the batch sumcheck batches 3|T| polynomials. If we let sp,T, sq,T, szc,T de-
note the sumcheck claims associated with a single trace T ∈ T for the LogUp numerator
claim, LogUp denominator claim, and ZeroCheck claim, then the total ordering of the
batch sumcheck is sp,T1

, sq,T1
, . . . , sp,T|T| , sq,T|T| , szc,T1

, . . . , szc,T|T| where the total or-

dering of T is in descending order of nT (with tie breaks determined by ordering of the
AIRs in the verifying key).

(viii) Apply Protocol 3.6.1 to reduce the evaluation claims of T̂ and T̂ ⋆ κ̂rot at rnT
for each

T ∈ T to evaluation claims of q̂Com,j′(u) for a random u ∈ Fnstack+1
ext .

(ix) Apply Protocol 3.7.1 to prove the evaluation claims of q̂Com,j′(u) via WHIR polynomial
opening proofs with respect to the commitments

{Compre,j
stack,k}j=1,...,mpre

,Comcommon
stack,k , {Comcache,j

stack,k}j=1,...,mcache

generated in steps (i),(iii). The polynomials q̂Com,j′ are algebraically batched together,
across all commitments. The WHIR protocol is applied to the batched polynomial as
described in [ACFY24, §2.1.3].

4. Security Analysis

We analyze the round-by-round soundness [CCH+19] and round-by-round proof of knowledge
[CMS19] of the proof system as an interactive oracle proof (IOP).

4.1. RBR soundness of batch sumcheck. Since our protocol makes multiple uses of batch
sumcheck, we start by reviewing the round-by-round (RBR) soundness of batch sumcheck as
an interactive proof (IP).

Theorem 4.1.1 (Batched sumcheck, front-loaded, with univariate skip). Protocol 2.7.4 has
round-by-round knowledge soundness with error

ε = max

{
m− 1

|Fext|
,

d0
|Fext|

,
d

|Fext|

}
where we use the notation of Protocol 2.7.4 and

• m is the number of polynomials being batched,

• dj (resp. d0) is the maximum of degXj
(f̂i) (resp. degZ(f̂i)) over all i,

• d = maxj=1,...,n dj.

Proof. The front-loading of polynomials of different variables does not affect the soundness
analysis, so we consider batch sumcheck over polynomials all of n + 1 variables. Algebraic
batching introduces an extra round with a newly sampled batching randomness λ. By the
Schwartz–Zippel lemma applied to

∑m
i=1 λ

i−1ci ∈ Fext[λ], we get error m−1
|Fext| . The error for

the subsequent sumcheck rounds follows from the RBR soundness error of standard sumcheck
[CCH+19, LFKN92]. We emphasize the d0

|Fext| term to highlight the contribution from the

univariate skip round.

SWIRL 23

RBR knowledge soundness of algebraic batching is immediate since the sum claims are
included in the transcript prior to batching. Round-by-round proof of knowledge [CMS19] of
sumcheck is also immediate since the witness in each round is directly included in the transcript.

□

4.2. RBR soundness of the protocol. We analyze the RBR soundness

Theorem 4.2.1 (Interactions via LogUp–GKR). Protocol 3.4.5 has round-by-round knowledge
soundness with error

(4.1) εlogup = max

{
(maxσ̂ len(σ̂) + 1)(|suppMT| − 1)

|Fext|
,

3

|Fext|

}
where maxσ̂ len(σ̂) is the maximum length of any message σ̂ in any interaction I in the circuit,
and |suppMT| is the cardinality of the support of the global LogUp multiset (i.e., it is the number
of distinct interaction messages in F+ across all traces).

Proof. We separate the protocol into: (i) an initial round where α, β are sampled and fractional
sum claim is computed, and (ii) the rounds comprising the GKR protocol. For (i), the soundness

error is proven to be bounded by (maxσ̂ len(σ̂)+1)(|suppMT |−1)
|Fext| in [Ope25a, Theorem 3.4]. For (ii),

the RBR soundness error follows from that of the batch sumcheck protocol [CCH+19] where
the sumcheck polynomial has per-variable degree 3 and 2 polynomials are batched. □

Theorem 4.2.2 (Batch constraint sumcheck). For a constraint–selector pair (C,S) ∈ A, let
d(C,S) denote the sum of the degree of C and the maximum degree of S in any variable. For
interaction (σ̂, m̂, b) ∈ I, let d(σ̂,m̂,b) = max(deg(σ̂),deg(m̂)). Let d(A,I) denote the maximum
of all d(C,S) and d(σ̂,m̂,b) over all constraints and interactions that appear in (A, I).

Protocol 3.5.1 has round-by-round knowledge soundness with error

(4.2) εbc = max

{
2ℓ − 1 + nT

|Fext|
,
NC − 1

|Fext|
,
3|T| − 1

|Fext|
,
(dC + 1)(2ℓ − 1)

|Fext|
,
dC + 1

|Fext|

}
where

• NC = maxA∈C|A| is the maximum number of constraints in any individual AIR A =
{(C,S)} in the circuit C,

• |T| ≤ |C| is the number of nonempty trace matrices,
• dC is the maximum of d(A,I) over all (A, I) ∈ C,

Proof. The RBR soundness error is the maximum over the errors in the following groups of
rounds that make up Protocol 3.5.1.

ZeroCheck reduction: the transcript samples ξ ∈ Fℓ+max(nT ,nLogUp)
ext . For ZeroCheck we only

consider the element ξ′ = ξ1 ∥ ξ2 ∈ F1+nT

ext . Suppose there exists (T, A) ∈ T and a constraint
(C,S) ∈ A that is not satisfied by the trace T. the committed traces. Then the polynomial

C̃T(Z) is not identically zero. Note that C̃T(Z) is prismalinear in Z. By the Schwartz–Zippel

lemma, the probability that C̃T(ξ
′) = 0 is

≤ 2ℓ − 1 + nT

|Fext|
.

This contributes the error for this round.
Constraint algebraic batching: suppose that we have C̃T(Z) not identically zero as above,

for a particular (C,S) ∈ A. Furthermore C̃T(ξ
′) ̸= 0. Then the probability that randomly

sampled λ can result in algebraically batched
∑

(C,S)∈A λ(C,S)C̃T(ξ
′) = 0 is ≤ |A|−1

|Fext| again by

24 OPENVM CONTRIBUTORS

Schwartz–Zippel. Taking the maximum over all AIRs A ∈ C, we conclude that the error for
this round is

≤ NC − 1

|Fext|
.

The remaining rounds comprise the batch sumcheck protocol applied to 3|T| polynomials.
Applying Theorem 4.1.1 to the polynomials as stated in Protocol 3.5.1, we get the error term

max

{
3|T| − 1

|Fext|
,
(dC + 1)(2ℓ − 1)

|Fext|
,
dC + 1

|Fext|

}
.

Here we use the fact that degXj
(C̃ λ

T,A(Z)) ≤ dC+1, where the +1 comes from the eq term. □

Theorem 4.2.3 (Stacked opening reduction). Protocol 3.6.1 has round-by-round knowledge
soundness with error

(4.3) εstack = max

{∑
T∈T 2wT − 1

|Fext|
,
2 · (2ℓ − 1)

|Fext|
,

2

|Fext|

}
where

∑
T∈T wT is the total number of columns across all partitioned trace matrices in T.

Proof. The RBR soundness is a direct application of Theorem 4.1.1. The number of polynomials
to batch corresponds to 2 times the number of columns due to the need to handle both T̂ and
T̂rot. The sumcheck polynomial has degree 2 · (2ℓ − 1) in Z and degree 2 in Xj because
q̂Com,jT,j

is prismalinear and we observe that inD,nT
(z′0) eqDnT

(z′
ñT

,Z) eqHnstack−ñT
(z′

>ñT
, bT,j)

and inD,nT
(z′0)κ̂rot,DnT

(z′
ñT

,Z) eqHnstack−ñT
(z′

>ñT
, bT,j) both have degree 2ℓ−1 in Z and degree

1 in Xj .
□

Theorem 4.2.4 (Batch WHIR). Assume the WHIR protocol is instantiated with a proximity
parameter δ < 1−ρ

2 in the unique decoding regime. Protocol 3.7.1 has round-by-round
knowledge soundness with error

(4.4) εbWHIR = max

{
(wT,stack − 1)|L|

|Fext|
, εWHIR

}
where |L| = 2ℓ+nstack/ρ is the order of the largest evaluation domain for the Reed–Solomon code,
and εWHIR is the round-by-round soundness error from [ACFY24, Theorem 5.6].

Proof. We perform algebraic batching of the codewords before instantiating WHIR. Therefore
the soundness error is the error from the correlated agreement theorem [BCI+20]. In the unique

decoding regime, this error is (wT,stack−1)· |L|
|Fext| . The remaining rounds are a direct application

of WHIR with one weight polynomial. □

Theorem 4.2.5 (SWIRL IOP). The interactive oracle proof described in §3.8 has round-by-
round knowledge soundness with error

(4.5) max {εlogup, εbc, εstack, εbWHIR} .

Proof. This follows by combining Theorems 4.2.1, 4.2.2, 4.2.3, and 4.2.4. □

Corollary 4.2.6. The non-interactive protocol described in §3.8 is a SNARK in the random
oracle model (ROM) and quantum random oracle model.

Proof. This follows from Theorem 4.2.5 by applying the BCS transform [BSCS16, CMS19]. □

SWIRL 25

References

[ACFY24] Gal Arnon, Alessandro Chiesa, Giacomo Fenzi, and Eylon Yogev. WHIR: Reed–solomon proximity
testing with super-fast verification. Cryptology ePrint Archive, Paper 2024/1586, 2024.

[BCI+20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proximity gaps

for reed-solomon codes. Cryptology ePrint Archive, Paper 2020/654, 2020.
[BDT24] Suyash Bagad, Yuval Domb, and Justin Thaler. The Sum-Check Protocol over Fields of Small Char-

acteristic. IACR Cryptol. ePrint Arch., 2024:1046, 2024.

[BSCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In Martin Hirt
and Adam Smith, editors, Theory of Cryptography, pages 31–60, Berlin, Heidelberg, 2016. Springer

Berlin Heidelberg.
[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D. Rothblum,

and Daniel Wichs. Fiat-shamir: from practice to theory. In Proceedings of the 51st Annual ACM

SIGACT Symposium on Theory of Computing, STOC 2019, page 1082–1090, New York, NY, USA,
2019. Association for Computing Machinery.

[CMS19] Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. Succinct arguments in the quantum random

oracle model. In Dennis Hofheinz and Alon Rosen, editors, Theory of Cryptography, pages 1–29, Cham,
2019. Springer International Publishing.

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: Interactive

proofs for muggles. J. ACM, 62(4), September 2015.
[Gru24] Angus Gruen. Some improvements for the PIOP for ZeroCheck. Cryptology ePrint Archive, Paper

2024/108, 2024.

[Hab22] Ulrich Haböck. A summary on the FRI low degree test. Cryptology ePrint Archive, Paper 2022/1216,
2022.

[Irr25] Irreducible Team. Binius Blueprint: Batch Evaluation. https://web.archive.org/web/

20250217104020/https://www.binius.xyz/blueprint/cryptography/evaluation/, 2025. No longer

available.

[LFKN92] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods for interactive
proof systems. J. ACM, 39(4):859–868, October 1992.

[Ope25a] OpenVM Contributors. On the Soundness of Interactions via LogUp. https://github.com/

openvm-org/stark-backend/blob/main/docs/Soundness_of_Interactions_via_LogUp.pdf, 2025.
[Ope25b] OpenVM Contributors. OpenVM Whitepaper. https://openvm.dev/whitepaper.pdf, 2025.

[PH23] Shahar Papini and Ulrich Haböck. Improving logarithmic derivative lookups using GKR. Cryptology

ePrint Archive, Paper 2023/1284, 2023.
[Val24] Valida Team. Valida. https://github.com/valida-xyz/valida, 2024.

[ZCF23] Hadas Zeilberger, Binyi Chen, and Ben Fisch. BaseFold: Efficient field-agnostic polynomial commit-

ment schemes from foldable codes. Cryptology ePrint Archive, Paper 2023/1705, 2023.

https://web.archive.org/web/20250217104020/https://www.binius.xyz/blueprint/cryptography/evaluation/
https://web.archive.org/web/20250217104020/https://www.binius.xyz/blueprint/cryptography/evaluation/
https://github.com/openvm-org/stark-backend/blob/main/docs/Soundness_of_Interactions_via_LogUp.pdf
https://github.com/openvm-org/stark-backend/blob/main/docs/Soundness_of_Interactions_via_LogUp.pdf
https://openvm.dev/whitepaper.pdf
https://github.com/valida-xyz/valida

	1. Introduction
	1.1. Notation
	1.2. Protocol Parameters

	2. Preliminaries
	2.1. Review of Circuit Frontend
	2.2. Representations of matrices
	2.3. Prismalinear extensions
	2.4. Univariate lifting
	2.5. Rotations
	2.6. Non-interactive protocols via BCS transform
	2.7. Sumcheck
	2.8. Evaluating piecewise multilinears

	3. Protocol Description
	3.1. Summary
	3.2. Stacked polynomial commitment
	3.3. ZeroCheck
	3.4. Interactions via LogUp GKR
	3.5. Batch constraint sumcheck
	3.6. Stacked opening reduction
	3.7. WHIR
	3.8. SWIRL protocol in full

	4. Security Analysis
	4.1. RBR soundness of batch sumcheck
	4.2. RBR soundness of the protocol

	References

